Artículo

Braslavsky, S.E.; Fron, E.; Rodríguez, H.B.; Román, E.S.; Scholes, G.D.; Schweitzer, G.; Valeur, B.; Wirz, J. "Pitfalls and limitations in the practical use of Förster's theory of resonance energy transfer" (2008) Photochemical and Photobiological Sciences. 7(12):1444-1448
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Disparate presentations in the literature of the basic equations of Förster's theory of resonance energy transfer are clarified and the limitations of these equations are discussed. © The Royal Society of Chemistry and Owner Societies.

Registro:

Documento: Artículo
Título:Pitfalls and limitations in the practical use of Förster's theory of resonance energy transfer
Autor:Braslavsky, S.E.; Fron, E.; Rodríguez, H.B.; Román, E.S.; Scholes, G.D.; Schweitzer, G.; Valeur, B.; Wirz, J.
Filiación:Max-Planck-Institut für Bioanorganische Chemie, Postfach 101365, 45413 Mülheim an der Ruhr, Germany
Department of Chemistry, Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
INQUIMAE/DQIAyQF, Facultad de Ciencias Exactas Y Naturales, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
Department STI, CNAM, 292 rue Saint-Martin, 75141 Paris Cedex 03, France
Institut d'Alembert, Laboratoire PPSM, ENS-Cachan, 61 Avenue du President Wilson, 94235 Cachan Cedex, France
Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
Palabras clave:energy transfer; fluorescence resonance energy transfer; mathematical analysis; molecular mechanics; nomenclature; priority journal; quantum yield; review; theory; Carbohydrates; Energy Transfer; Fluorescent Dyes; Kinetics; Nanotechnology; Nucleic Acids; Protein Binding; Protein Conformation; Proteins; Quantum Theory
Año:2008
Volumen:7
Número:12
Página de inicio:1444
Página de fin:1448
DOI: http://dx.doi.org/10.1039/b810620g
Título revista:Photochemical and Photobiological Sciences
Título revista abreviado:Photochem. Photobiol. Sci.
ISSN:1474905X
CODEN:PPSHC
CAS:Carbohydrates; Fluorescent Dyes; Nucleic Acids; Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1474905X_v7_n12_p1444_Braslavsky

Referencias:

  • Förster, Th., Energiewanderung und Fluoreszenz (1946) Naturwissenschaften, 6, pp. 166-175
  • Förster, Th., Zwischenmolekulare Energiewanderung und Fluoreszenz (1948) Ann. Phys., 2, pp. 55-75
  • Förster, Th., Experimentelle und theoretische Untersuchung des zwischenmolekularen Übergangs von Elektronenanregungsenergie (1949) Z. Naturforsch. a, 4, pp. 321-327
  • Förster, Th., (1951) Fluoreszenz Organischer Verbindungen, , Vandenhoeck & Ruprecht, Göttingen
  • Förster, Th., Transfer mechanisms of electronic excitation (1959) Discuss. Faraday Soc., 27, pp. 7-17
  • Förster, Th., Transfer mechanisms of electronic excitation energy (1960) Radiation Res. Suppl., 2, pp. 326-339
  • Stryer, L., Haugland, R.P., Energy transfer: A spectroscopic ruler (1967) Proc. Natl. Acad. Sci. U. S. A., 58, pp. 719-726
  • Van Der Meer, B.V., Coker III, G., Simon Chen, S.-Y., (1994) Resonance Energy Transfer: Theory and Data, , Wiley-VCH, New York
  • Miller, J.N., Fluorescence energy transfer methods in bioanalysis (2005) Analyst, 130, pp. 265-270
  • Klostermeier, D., Millar, D.P., Time-resolved fluorescence resonance energy transfer: A versatile tool for the analysis of nucleic acids (2002) Biopol. (Nucleic Acid Sci.), 61, pp. 159-179
  • Greenleaf, W.J., Woodside, M.T., Block, S.M., High-resolution, single-molecule measurements of biomolecular motion (2007) Annu. Rev. Biophys. Biomol. Struct., 36, pp. 171-190
  • Braslavsky, S.E., Glossary of terms used in photochemistry, 3rd edn (2007) Pure Appl. Chem., 79, pp. 293-465
  • Valeur, B., (2001) Molecular Fluorescence, Principles and Applications, , Wiley-VCH, Weinheim
  • Van Der Meer, B.W., Kappa-squared: From nuisance to new sense (2002) Rev. Mol. Biotechnol., 82, pp. 181-196
  • Ermolaev, V.L., Sveshnikova, E.V., Inductive-resonance energy transfer from aromatic molecules in the triplet state (1963) Dokl. Akad. Nauk SSSR, 149, pp. 1295-1298
  • Bennett, R.G., Schwenker, R.P., Kellog, R.E., Radiationless intermolecular energy transfer. II. Triplet-singlet, transfer (1964) J. Chem. Phys., 41, pp. 3040-3041
  • Clegg, R., The history of FRET: From conception to the labor of birth, in (2006) Reviews in Fluorescence, , ed. C. D. Geddes and J. R. Lakowitz, Springer, New York, pp. 1-45
  • Förster, Th., Delocalized excitation and excitation transfer, in (1965) Modern Quantum Chemistry, Istanbul Lectures, Ed., , O. Sinanoglu, Academic Press, New York
  • Förster, Th., Mechanism of energy transfer, in (1967) Comprehensive Biochemistry, Bioenergetics, Ed., , M. Florkin and E. H. Stotz, Elsevier, Amsterdam, vol. 22
  • Wu, P., Brand, L., Resonance energy transfer: Methods and applications (1994) Anal. Biochem., 218, pp. 1-13
  • Lee, J., Malpractices in chemical calculations (2007) U. Chem. Ed., 7, pp. 27-32
  • Van Der Meer, B.W., Orientational aspects in pair energy transfer, in (1999) Resonance Energy Transfer, Ed., , D. L. Andrews and A. A. Demidov, Wiley, New York
  • Dos Remedios, C.G., Moens, P.D.J., Fluorescence resonance energy transfer spectroscopy is a reliable "ruler" for measuring structural changes in proteins: Dispelling the problem of the unknown orientation factor (1995) J. Struct. Biol., 115, pp. 175-185
  • Baumann, J., Fayer, M.D., Excitation transfer in disordered two-dimensional and anisotropic three-dimensional systems: Effects of spatial geometry on time-resolved observables (1986) J. Chem. Phys., 85, pp. 4087-4107
  • Scholes, G.D., Long-range resonance energy transfer in molecular systems (2003) Annu. Rev. Phys. Chem., 54, pp. 57-87
  • Demember, J.R., Filipescu, N., Intramolecular energy transfer between nonconjugated chromophores. Effect of rigid perpendicular orientation (1968) J. Am. Chem. Soc., 90, pp. 8425-6428
  • Maus, M., De, R., Lor, M., Weil, T., Mitra, S., Wiesler, U.-M., Herrmann, A., De Schryver, F.C., Intramolecular energy hopping and energy trapping in polyphenylene dendrimers with multiple peryleneimide donor chromophores and a terryleneimide acceptor trap chromophore (2001) J. Am. Chem. Soc., 123, pp. 7668-7676
  • Jares-Erichman, E., Jovin, T.M., Imaging molecular interactions in living cells by FRET microscopy (2006) Curr. Opin. Chem. Biol., 10, pp. 409-416
  • Clegg, R., Fluorescence resonance energy transfer (1995) Curr. Opin. Biotechnol., 6, pp. 103-110
  • Rao, M., Mayor, S., Use of Forster′s resonance energy transfer microscopy to study lipid rafts (2005) Biochim. Biophys. Acta, 1746, pp. 221-233
  • Chang, J.C., Monopole effects on electronic excitation interactions between large molecules. I. Application to energy transfer in chlorophylls (1977) J. Chem. Phys., 67, pp. 3901-3909
  • Beljonne, D., Cornil, J., Silbey, R., Millie, P., Bredas, J.L., Interchain interactions in conjugated materials: The exciton model versus the supermolecular approach (2000) J. Chem. Phys., 112, pp. 4749-4758
  • Krueger, B.P., Scholes, G.D., Fleming, G.R., Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method (1998) J. Phys. Chem. B, 102, pp. 5378-5386
  • Dexter, D.L., A theory of sensitized luminescence in solids (1953) J. Chem. Phys., 21, pp. 836-850
  • Speiser, S., Photophysics and mechanisms of intramolecular electronic energy transfer in bichromophoric molecular systems: Solution and supersonic jet studies (1996) Chem. Rev., 96, pp. 1953-1976
  • Scholes, G.D., Ghiggino, K.P., Electronic interactions and interchromophore excitation transfer (1994) J. Phys. Chem., 98, pp. 4580-4590
  • Fleming, G.R., Scholes, G.D., Quantum mechanics for plants (2004) Nature, 431, pp. 256-257
  • Sundström, V., Pullerits, T., Van Grondelle, R., Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit (1999) J. Phys. Chem. B, 103, pp. 2327-2346
  • Kasha, M., Energy transfer mechanisms and molecular exciton model for molecular aggregates (1963) Radiation Res., 20, pp. 55-71
  • Van Grondelle, R., Novoderezhkin, V.I., Energy transfer in photosynthesis: Experimental insights and quantitative models (2006) Phys. Chem. Chem. Phys., 8, pp. 793-807
  • Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.-K., Mancal, T., Cheng, Y.-C., Blankenship, R.E., Fleming, G.R., Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems (2007) Nature, 446, pp. 782-786
  • Lee, H., Cheng, Y.-C., Fleming, G.R., Coherence dynamics in photosynthesis: Protein protection of excitonic coherence (2007) Science, 316, pp. 1462-1465
  • Walla, P.J., Linden, P.A., Hsu, C.P., Scholes, G.D., Fleming, G.R., Femtosecond dynamics of the forbidden carotenoid S1 state in light-harvesting complexes of purple bacteria observed after two-photon excitation (2000) Proc. Natl. Acad. Sci. U. S. A., 97, pp. 10808-10813
  • Knox, R.S., Van Amerongen, H., Refractive index dependence of the Förster resonance excitation transfer rate (2002) J. Phys. Chem. B, 106, pp. 5289-5293
  • Iozzi, M.F., Mennucci, B., Tomasi, J., Cammi, R., Excitation energy transfer (EET) between molecules in condensed matter: A novel application of the polarizable continuum model (PCM) (2004) J. Chem. Phys., 120, pp. 7029-7040
  • Scholes, G.D., Curutchet, C., Mennucci, B., Cammi, R., Tomasi, J., How solvent controls electronic energy transfer and light harvesting (2007) J. Phys. Chem. B, 111, pp. 6978-6982

Citas:

---------- APA ----------
Braslavsky, S.E., Fron, E., Rodríguez, H.B., Román, E.S., Scholes, G.D., Schweitzer, G., Valeur, B.,..., Wirz, J. (2008) . Pitfalls and limitations in the practical use of Förster's theory of resonance energy transfer. Photochemical and Photobiological Sciences, 7(12), 1444-1448.
http://dx.doi.org/10.1039/b810620g
---------- CHICAGO ----------
Braslavsky, S.E., Fron, E., Rodríguez, H.B., Román, E.S., Scholes, G.D., Schweitzer, G., et al. "Pitfalls and limitations in the practical use of Förster's theory of resonance energy transfer" . Photochemical and Photobiological Sciences 7, no. 12 (2008) : 1444-1448.
http://dx.doi.org/10.1039/b810620g
---------- MLA ----------
Braslavsky, S.E., Fron, E., Rodríguez, H.B., Román, E.S., Scholes, G.D., Schweitzer, G., et al. "Pitfalls and limitations in the practical use of Förster's theory of resonance energy transfer" . Photochemical and Photobiological Sciences, vol. 7, no. 12, 2008, pp. 1444-1448.
http://dx.doi.org/10.1039/b810620g
---------- VANCOUVER ----------
Braslavsky, S.E., Fron, E., Rodríguez, H.B., Román, E.S., Scholes, G.D., Schweitzer, G., et al. Pitfalls and limitations in the practical use of Förster's theory of resonance energy transfer. Photochem. Photobiol. Sci. 2008;7(12):1444-1448.
http://dx.doi.org/10.1039/b810620g