Abstract:
We prepared water soluble, biocompatible fluorescent turn-on pH nanosensors and characterized their behavior as a function of changes in pH. The response relies on a halochromic reaction of a spirorhodamineamide derived from the bright and highly chemically and photo-stable rhodamine 6G, encapsulated in core/nanoporous shell silica nanoparticles. The fluorescent sensors displayed a fast response in the pH range of intracellular compartments. The encapsulation conferred solubility in aqueous environments and biocompatibility. We assessed the two main properties of the sensor, namely the useful pH range and the kinetics of the response, and compared them to those of the free probe. We found that such properties are strongly dependent on the functionalization and position in the silica matrix relative to the core/shell structure. Finally, we demonstrated the cellular uptake of the nanosensors, and their localization in lysosomes of living cells, by fluorescence confocal microscopy. © The Royal Society of Chemistry and Owner Societies.
Registro:
Documento: |
Artículo
|
Título: | Nanoporous silica nanoparticles functionalized with a fluorescent turn-on spirorhodamineamide as pH indicators |
Autor: | Di Paolo, M.; Roberti, M.J.; Bordoni, A.V.; Aramendía, P.F.; Wolosiuk, A.; Bossi, M.L. |
Filiación: | INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina Departamento de Química Inorgánica, Analítica y Química Física. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Pabellón 2. Ciudad Universitaria, Ciudad de Buenos Aires, 1428, Argentina Gerencia Química-Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 B1650KNA San Martín, Buenos Aires, Argentina Centro de Investigaciones en Bionanociencias “Elizabeth Jares-Erijman” CIBION-CONICET, Godoy Cruz 2390, Ciudad de Buenos Aires, 1425, Argentina Max-Planck-Institute For Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany
|
Año: | 2019
|
Volumen: | 18
|
Número: | 1
|
Página de inicio: | 155
|
Página de fin: | 165
|
DOI: |
http://dx.doi.org/10.1039/c8pp00133b |
Título revista: | Photochemical and Photobiological Sciences
|
Título revista abreviado: | Photochem. Photobiol. Sci.
|
ISSN: | 1474905X
|
CODEN: | PPSHC
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1474905X_v18_n1_p155_DiPaolo |
Referencias:
- Gonçalves, M.S.T., Fluorescent Labeling of Biomolecules with Organic Probes (2009) Chem. Rev., 109, pp. 190-212
- Lee, M., Han, J., Lee, J., Park, N., Kumar, R., Kang, C., Kim, J., Two-Color Probe to Monitor a Wide Range of pH Values in Cells (2013) Angew. Chem., Int. Ed., 52, pp. 6206-6209
- Li, L., Wang, C., Wu, J., Tse, Y.C., Cai, Y., Wong, K.M., A Molecular Chameleon with Fluorescein and Rhodamine Spectroscopic Behaviors (2016) Inorg. Chem., 55, pp. 205-213
- Haugland, R.P., (2002) Handbook of fluorescent probes and research chemicals, , Molecular Probes Inc Eugene, OR. USA, 9th edn
- Beija, M., Afonso, C.A.M., Martinho, J.M.G., Synthesis and applications of Rhodamine derivatives as fluorescent probes (2009) Chem. Soc. Rev., 38, pp. 2410-2433
- Giloh, H., Sedat, J.W., Fluorescence Microscopy: Reduced Photobleaching of Rhodamine and Fluorescein Protein Conjugates by n-Propyl Gallate (1982) Science, 217, pp. 1252-1255
- Eggeling, C., Widengren, J., Rigler, R., Seidel, C.A.M., Photobleaching of Fluorescent Dyes under Conditions Used for Single-Molecule Detection: Evidence of Two-Step Photolysis (1998) Anal. Chem., 70, pp. 2651-2659
- Widengren, J., Rigler, R., Mechanisms of photobleaching investigated by fluorescence correlation spectroscopy (1996) Bioimaging, 4, pp. 149-157
- Knauer, K.-H., Gleiter, R., Photochromism of Rhodarnine Derivatives (1977) Angew. Chem., Int. Ed. Engl., 16, p. 113
- Fölling, J., Belov, V.N., Kunetsky, R., Medda, R., Schönle, A., Egner, A., Eggeling, C., Hell, S.W., Photochromic Rhodamines provide Nanoscopy with Optical Sectioning (2007) Angew. Chem., Int. Ed., 46, pp. 6266-6270
- Bossi, M.L., Fölling, J., Belov, V.N., Boyarskiy, V.P., Medda, R., Egner, A., Eggeling, C., Hell, S.W., Multicolor Far-Field Fluorescence Nanoscopy through Isolated Detection of Distinct Molecular Species (2008) Nano Lett., 8, pp. 2463-2468
- Belov, V.N., Bossi, M.L., Foelling, J., Boyarskiy, V.P., Hell, S.W., Rhodamine Spiroamides for Multicolor Single-Molecule Switching Fluorescent Nanoscopy (2009) Chem.-Eur. J., 15, pp. 10762-10776
- Aoki, H., Mori, K., Ito, S., Conformational analysis of single polymer chains in three dimensions by super-resolution fluorescence microscopy (2012) Soft Matter, 8, pp. 4390-4395
- Aquino, D., Schönle, A., Geisler, C., Middendorff, C.V., Wurm, C.A., Okamura, Y., Lang, T., Egner, A., Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores (2011) Nat. Methods, 8, pp. 353-359
- Kim, H.N., Lee, M.H., Kim, H.J., Kim, J.S., Yoon, J., A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions (2008) Chem. Soc. Rev., 37, pp. 1465-1472
- Chen, X., Pradhan, T., Wang, F., Kim, J.S., Yoon, J., Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives (2012) Chem. Rev., 112, pp. 1910-1956
- Zheng, H., Zhan, X.-Q., Bian, Q.-N., Zhang, X.-J., Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors (2013) Chem. Commun., 49, pp. 429-447
- Quang, D.T., Kim, J.S., Fluoro- and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens (2010) Chem. Rev., 110, pp. 6280-6301
- Yang, Y., Zhao, Q., Feng, W., Li, F., Luminescent Chemodosimeters for Bioimaging (2013) Chem. Rev., 113, pp. 192-270
- Zhang, W., Tang, B., Liu, X., Liu, Y., Xu, K., Ma, J., Tong, L., Yang, G., A highly sensitive acidic pH fluorescent probe and its application to HepG2 cells (2009) Analyst, 134, pp. 367-371
- Liu, A., Hong, M., Yang, W., Lu, S., Xu, D., One-pot synthesis of a new rhodamine-based dually-responsive pH sensor and its application to bioimaging (2014) Tetrahedron, 70, pp. 6974-6979
- Li, Z., Wu, S., Han, J., Han, S., Imaging of intracellular acidic compartments with a sensitive rhodamine based fluorogenic pH sensor (2011) Analyst, 136, pp. 3698-3706
- Talley, K., Alexov, E., On the pH-optimum of activity and stability of proteins (2010) Proteins, 78, pp. 2699-2706
- Martínez-Zaguilán, R., Chinnock, B.F., Wald-Hopkins, S., Bernas, M., Way, D., Witte, M.H., Gillies, R.J., [Ca2+]i and pHin homeostasis in kaposi sarcoma cells (1996) Cell. Physiol. Biochem., 6, pp. 148-169
- Perez-Sala, D., Collado-Escobar, D., Mollinedo, D.F., Intracellular alkalinization suppresses lovastatin-induced apoptosis in HL-60 cells through the inactivation of a pH-dependent endonuclease (1995) J. Biol. Chem., 270, pp. 6235-6242
- Davies, T.A., Fine, R.E., Johnson, R.J., Levesque, C.A., Rathbun, W.H., Seetoo, K.F., Smith, S.J., Simons, E.R., Non-age Related Differences in Thrombin Responses by Platelets from Male Patients with Advanced Alzheimer's Disease (1993) Biochem. Biophys. Res. Commun., 194, pp. 537-543
- Pan, W., Wang, H., Yang, L., Yu, Z., Li, N., Tang, B., Ratiometric Fluorescence Nanoprobes for Subcellular pH Imaging with a Single-Wavelength Excitation in Living Cells (2016) Anal. Chem., 88, pp. 6743-6748
- Li, H., Guan, H., Duan, X., Hu, J., Wang, G., Wang, Q., An acid catalyzed reversible ring-opening/ring-closure reaction involving a cyano-rhodamine spirolactam (2013) Org. Biomol. Chem., 11, pp. 1805-1809
- Yu, K.-K., Li, K., Hou, J.-T., Qin, H.-H., Xie, Y.-M., Qian, C.-H., Yu, X.-Q., Rhodamine-based lysosome-targeted fluorescence probes: high pH sensitivity and their imaging application in living cells (2014) RSC Adv., 4, pp. 33975-33980
- Li, H., Wang, C., She, M., Zhu, Y., Zhang, J., Yang, Z., Liu, P., Li, J., Two rhodamine lactam modulated lysosome-targetable fluorescence probes for sensitively and selectively monitoring subcellular organelle pH change (2015) Anal. Chim. Acta, 900, pp. 97-102
- Trombetta, E.S., Ebersold, M., Garrett, W., Pypaert, M., Mellman, I., Activation of Lysosomal Function During Dendritic Cell Maturation (2003) Science, 299, pp. 1400-1403
- Nilsson, C., Kågedal, K., Johansson, U., Öllinger, K., Analysis of cytosolic and lysosomal pH in apoptotic cells by flow cytometry (2003) Methods Cell Sci., 25, pp. 185-194
- Montenegro, H., Di Paolo, M., Capdevila, D., Aramendía, P.F., Bossi, M.L., The mechanism of the photochromic transformation of spirorhodamines (2012) Photochem. Photobiol. Sci., 11, pp. 1081-1086
- Søndergaard, R.V., Christensen, N.M., Henriksen, J.R., Pramod Kumar, E.K., Almdal, K., Andresen, T.L., Facing the Design Challenges of Particle-Based Nanosensors for Metabolite Quantification in Living Cells (2015) Chem. Rev., 115, pp. 8344-8378
- Wang, K., He, X., Yang, X., Shi, H., Functionalized Silica Nanoparticles: A Platform for Fluorescence Imaging at the Cell and Small Animal Levels (2013) Acc. Chem. Res., 46, pp. 1367-1376
- Burns, A., Ow, H., Wiesner, U., Fluorescent core-shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology (2006) Chem. Soc. Rev., 35, pp. 1028-1042
- Wang, F., Tan, W., Zhang, Y., Fan, X., Wang, M., Luminescent nanomaterials for biological Labelling (2006) Nanotechnology, 17, pp. R1-R13
- Wang, L., Yang, C., Tan, W., Dual-Luminophore-Doped Silica Nanoparticles for Multiplexed Signaling (2005) Nano Lett., 5, pp. 37-43
- Gao, F., Tang, L., Dai, L., Wang, L., A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles (2007) Spectrochim. Acta, Part A, 67, pp. 517-521
- Bagwe, R.P., Hilliard, L.R., Tan, W., Surface Modification of Silica Nanoparticles to Reduce Aggregation and Nonspecific Binding (2006) Langmuir, 22, pp. 4357-4362
- Rosenholm, J.M., Meinander, A., Peuhu, E., Niemi, R., Eriksson, J.E., Sahlgren, C., Lindén, M., Targeting of Porous Hybrid Silica Nanoparticles to Cancer Cells (2009) ACS Nano, 3, pp. 197-206
- Korzeniowska, B., Nooney, R., Wencel, D., McDonagh, C., Silica nanoparticles for cell imaging and intracellular sensing (2013) Nanotechnology, 24, p. 442002
- Stöber, W., Fink, A., Bohn, E.J., Controlled growth of monodisperse silica spheres in the micron size range (1968) Colloid Interface Sci., 26, pp. 62-69
- Wolfbeis, O.S., An overview of nanoparticles commonly used in fluorescent bioimaging (2015) Chem. Soc. Rev., 44, pp. 4743-4768
- Van Blaaderen, A., Vrij, A., Synthesis and Characterization of Colloidal Dispersions of Fluorescent, Monodisperse Silica Spheres (1992) Langmuir, 8, pp. 2921-2931
- Argyo, C., Weiss, V., Bräuchle, C., Bein, T., Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery (2014) Chem. Mater., 26, pp. 435-451
- Cauda, V., Schlossbauer, A., Kecht, J., Zürner, A., Bein, T., Multiple Core-Shell Functionalized Colloidal Mesoporous Silica Nanoparticles (2009) J. Am. Chem. Soc., 131, pp. 11361-11370
- Hornig, S., Biskup, C., Gräfe, A., Wotschadlo, J., Liebert, T., Mohr, G.J., Heinze, T., Biocompatible fluorescent nanoparticles for pH-sensoring (2008) Soft Matter, 4, pp. 1169-1172
- Lei, J., Wang, L., Zhang, J., Ratiometric pH sensor based on mesoporous silica nanoparticles and Förster resonance energy transfer (2010) Chem. Commun., 46, pp. 8445-8447
- Wu, S., Li, Z., Han, J., Han, S., Dual colored mesoporous silica nanoparticles with pH activable rhodamine-lactam for ratiometric sensing of lysosome acidity (2011) Chem. Commun., 47, pp. 11276-11278
- Marchena, M.H., Granada, M., Bordoni, A.V., Joselevich, M., Troiani, H., Williams, F.J., Wolosiuk, A., Organized thiol functional groups in mesoporous core shell colloids (2012) J. Solid State Chem., 187, pp. 97-102
- Herz, E., Ow, H., Bonner, D., Burns, A., Wiesner, U., Dye structure-optical property correlations in near-infrared fluorescent core-shell silica nanoparticles (2009) J. Mater. Chem., 19, pp. 6341-6347
- Xie, X., Zhai, J., Jarolímová, Z., Bakker, E., Determination of pKa Values of Hydrophobic Colorimetric pH Sensitive Probes in Nanospheres (2016) Anal. Chem., 88, pp. 3015-3018
- Kim, K.-M., Kim, H.M., Lee, W.-J., Lee, C.-W., Kim, T., Lee, J.-K., Jeong, J., Oh, J.-M., Surface treatment of silica nanoparticles for stable and charge-controlled colloidal silica (2014) Int. J. Nanomed., 9, pp. 29-40
- Zane, A., McCracken, C., Knight, D.A., Young, T., Lutton, A.D., Olesik, J.W., Waldman, W.J., Dutta, P.K., Uptake of bright fluorophore core-silica shell nanoparticles by biological systems (2015) Int. J. Nanomed., 10, pp. 1547-1567
Citas:
---------- APA ----------
Di Paolo, M., Roberti, M.J., Bordoni, A.V., Aramendía, P.F., Wolosiuk, A. & Bossi, M.L.
(2019)
. Nanoporous silica nanoparticles functionalized with a fluorescent turn-on spirorhodamineamide as pH indicators. Photochemical and Photobiological Sciences, 18(1), 155-165.
http://dx.doi.org/10.1039/c8pp00133b---------- CHICAGO ----------
Di Paolo, M., Roberti, M.J., Bordoni, A.V., Aramendía, P.F., Wolosiuk, A., Bossi, M.L.
"Nanoporous silica nanoparticles functionalized with a fluorescent turn-on spirorhodamineamide as pH indicators"
. Photochemical and Photobiological Sciences 18, no. 1
(2019) : 155-165.
http://dx.doi.org/10.1039/c8pp00133b---------- MLA ----------
Di Paolo, M., Roberti, M.J., Bordoni, A.V., Aramendía, P.F., Wolosiuk, A., Bossi, M.L.
"Nanoporous silica nanoparticles functionalized with a fluorescent turn-on spirorhodamineamide as pH indicators"
. Photochemical and Photobiological Sciences, vol. 18, no. 1, 2019, pp. 155-165.
http://dx.doi.org/10.1039/c8pp00133b---------- VANCOUVER ----------
Di Paolo, M., Roberti, M.J., Bordoni, A.V., Aramendía, P.F., Wolosiuk, A., Bossi, M.L. Nanoporous silica nanoparticles functionalized with a fluorescent turn-on spirorhodamineamide as pH indicators. Photochem. Photobiol. Sci. 2019;18(1):155-165.
http://dx.doi.org/10.1039/c8pp00133b