Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The main goal of the present work was to clarify physiological strategies in plants whose chloroplasts were developed under different light environments. The specific objective was to elucidate the influence of the spectral distribution of light on the chlorophyll fluorescence ratio and on photosynthetic parameters. To achieve this purpose, three species of eggplant fruit (black, purple and white striped and white) were used as a case study and their chlorophyll fluorescence was analyzed in detail. Spectra of the non-variable fluorescence in each part of the fruit were corrected for distortions by light reabsorption processes using a physical model. The main conclusion of this work was that the corrected fluorescence ratio was dependent on the contribution of each photosystem to the fluorescence and consequently on the environmental lighting conditions, becoming higher when illumination was rich in long wavelengths. Variable chlorophyll fluorescence, similar to that observed from plant leaves, was detected for the pulp of the black eggplant, for the pulp of the purple and white striped eggplant and for the intact fruit of the black eggplant. The maximum quantum efficiency of photosystem II in the light-adapted state (F′v/F′m), the quantum efficiency of photosystem II (ΦPSII), and the photochemical and non-photochemical quenching coefficients (qP and qNP/NPQ respectively) were determined in each case. The results could be explained very interestingly, in relation with the proportion of exciting light reaching each photosystem (I and II). The photochemical parameters obtained from variable chlorophyll fluorescence, allowed us to monitor non-destructively the physiological state of the black fruit during storage under both chilled or room-temperature conditions. © The Royal Society of Chemistry and Owner Societies 2017.

Registro:

Documento: Artículo
Título:Variability in chlorophyll fluorescence spectra of eggplant fruit grown under different light environments: A case study
Autor:Ospina Calvo, B.; Parapugna, T.L.; Lagorio, M.G.
Filiación:INQUIMAE, Universidad de Buenos Aires, CONICET, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
Dpto. de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria. Pabellón II, 1er pisoC1428EHA, Argentina
Año:2017
Volumen:16
Número:5
Página de inicio:711
Página de fin:720
DOI: http://dx.doi.org/10.1039/c6pp00475j
Título revista:Photochemical and Photobiological Sciences
Título revista abreviado:Photochem. Photobiol. Sci.
ISSN:1474905X
CODEN:PPSHC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1474905X_v16_n5_p711_OspinaCalvo

Referencias:

  • Maxwell, K., Johnson, G.N., Chlorophyll fluorescence-A practical guide (2000) J. Exp. Bot., 51, pp. 659-668
  • Baker, N.R., Oxborough, K., (2004) Chlorophyll A Fluorescence: A Signature of Photosynthesis, 1, pp. 68-74. , ed. G. C. Papageorgiou and Govindjee, Springer, Dordrecht, 1st edn, ch. 3
  • Lagorio, M.G., Chlorophyll fluorescence emission spectra in photosynthetic organisms (2011) Chlorophyll: Structure, Production and Medicinal Uses, p. 115. , ed. H. Le and E. Salcedo, Nova Publisher, Hauppauge, NY, ch. 4
  • DeEll, J.R., Toivonen, P.M.A., Use of chlorophyll fluorescence in postharvest quality assessments of fruits and vegetables (2003) Practical Applications of Chlorophyll Fluorescence in Plant Biology, p. 203. , ed. J. R. DeEll and M. A. Toivonen, Kluwer Academic Publishers, London, ch. 7
  • Kalaji, M.H., Goltsev, V., Bosa, K., Allakverdiev, S.I., Strasser, R.J., Govindjee, Experimental in vivo measurements of light emission in plants: A perspective dedicated to David Walker (2012) Photosynth. Res., 114, pp. 69-96
  • Kalaji, H.M., Schansker, G., Brestic, M., Frequently asked questions about chlorophyll fluorescence, the sequel (2016) Photosynth. Res.
  • Kowalczyk, K., Gajc-Wolska, J., Marcinkowska, M., Cetner, M.D., Kalaji, H.M., Response of growth, quality parameters and photosynthetic apparatus of endive plant to different culture media (2016) Folia Hort., 28, pp. 25-30
  • Goltsev, V., Kalaji, M.H., Paunova, M., Babak, V., Horachekd, T., Moyskid, J., Kotsel, H., Allahverdieve, S.I., Using a variable chlorophyll fluorescence for evaluation of physiological state photosynthetic apparatus plants (2016) Russ. J. Plant Physiol., 63, pp. 1-28
  • Kalaji, M.H., Schansker, G., Ladle, R.J., Frequently Asked Questions about in vivo chlorophyll fluorescence: Practical issues (2014) Photosynth. Res., 122, pp. 121-158
  • Ramos, M.E., Lagorio, M.G., True Fluorescence Spectra of leaves (2004) Photochem. Photobiol. Sci., 3, pp. 1063-1066
  • Franck, F., Juneau, P., Popovic, R., Resolution of the Photosystem i and Photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature (2002) Biochim. Biophys. Acta, 1556, pp. 239-256
  • Mazzinghi, P., Agati, G., Fusi, F., Interpretation and physiological significance of blue-green and red vegetation fluorescence (1994) Geoscience and Remote Sensing Symposium, 1994 (IGARSS) '94, Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, 1, pp. 640-642
  • Buschmann, C., Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves (2007) Photosynth. Res., 92, pp. 261-271
  • Hák, R., Lichtenthaler, H.K., Rinderle, U., Decrease of the chlorophyll fluorescence ratio F690/F730 during greening and development of leaves (1990) Radiat. Environ. Biophys., 29, pp. 329-336
  • D'Ambrosio, N., Szabo, K., Lichtenthaler, H.K., Increase of the chlorophyll fluorescence ratio F690/F735 during the autumnal chlorophyll breakdown (1992) Radiat. Environ. Biophys, 31, pp. 51-62
  • Pedrós, R., Moya, I., Goulas, Y., Jacquemoud, S., Chlorophyll fluorescence emission spectrum inside a leaf (2008) Photochem. Photobiol. Sci., 7, pp. 498-502
  • Agati, G., Response of the in vivo chlorophyll fluorescence spectrum to environmental factors and laser excitation wavelength (1998) Pure Appl. Opt., 7, pp. 797-807
  • Agati, G., Fusi, F., Mazzinghi, P., Lipucci Di Paola, M., A simple approach to the evaluation of the re-absorption of chlorophyll fluorescence spectra in intact leaves (1993) J. Photochem. Photobiol., B, 17, pp. 163-171
  • Cordon, G.B., Lagorio, M.G., Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models (2006) Photochem. Photobiol. Sci., 5, pp. 735-740
  • Ramos, M.E., Lagorio, M.G., A model considering light reabsorption processes to correct in vivo chlorophyll fluorescence spectra in apples (2006) Photochem. Photobiol. Sci., 5, pp. 508-512
  • Cordon, G.B., Lagorio, M.G., Optical properties of the adaxial and abaxial faces of leaves. Chlorophyll fluorescence, absorption and scattering coefficients (2007) Photochem. Photobiol. Sci., 6, pp. 873-882
  • Mendes Novo, J., Iriel, A., Lagorio, M.G., Modelling chlorophyll fluorescence of kiwi fruit (Actinidia deliciosa) (2012) Photochem. Photobiol. Sci., 11, pp. 724-730
  • Iriel, A., Mendes Novo, J., Cordon, G., Lagorio, M.G., Atrazine and Methyl viologen effects on Chlorophyll-A fluorescence revisited. Implications in Photosystems Emission and Ecotoxicity Assessment (2014) Photochem. Photobiol., 90, pp. 107-112
  • Iriel, A., Dundas, G., Fernández Cirelli, A., Lagorio, M.G., Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants (2015) Chemosphere, 119, pp. 697-703
  • Pfündel, E., Estimating the contribution of Photosystem i to total leaf chlorophyll fluorescence (1998) Photosynth. Res., 56, pp. 185-195
  • Agati, G., Response of the in vivo Chlorophyll fluorescence spectrum to environmental factors and laser excitation wavelength (1998) Pure Appl. Opt., 7, p. 797
  • Anderson, J.M., Horton, P., Kim, E., Chow, W.S., Towards elucidation of dynamic structural changes of plant thylakoid architecture (2012) Philos. Trans. R. Soc. London, Ser. B, 367, pp. 3515-3524
  • Minagawa, J., State transitions. The molecular remodeling of photosynthetic supercomplexes that controls energy flow inchloroplasts (2011) Biochim. Biophys. Acta, 1807, pp. 897-905
  • Lichtenthaler, H.K., Buschmann, C., Knapp, M., How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer (2005) Photosynthetica, 43, pp. 379-393
  • Lechaudel, M., Urban, L., Joas, J., Chlorophyll fluorescence, a nondestructive method to assess maturity of mango fruits (Cv. 'Cogshall') without growth conditions bias (2010) J. Agric. Food Chem., 58, pp. 7532-7538
  • Cerovic, Z.G., Moise, N., Agati, G., Latouche, G., Ben Ghozlen, N., Meyer, S., New portable optical sensors for the assessment of winegrape phenolic maturity based on berry fluorescence (2008) J. Food Compos. Anal., 21, pp. 650-654
  • Dąbrowski, P., Baczewska, A.H., Pawluśkiewicz, B., Paunovc, M., Alexantrov, V., Goltsev, V., Kalaji, M.H., Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass (2016) J. Photochem. Photobiol., B, 157, pp. 22-31
  • Kalaji, H.M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, A., Cetner, M.D., Ladle, R.J., Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions (2016) Acta Physiol. Plant, 38, p. 102
  • Lagorio, M.G., Dicelio, L.E., Litter, M.I., San Román, E., Modeling of Fluorescence Quantum Yields of Supported dyes. Aluminum carboxy-phthalocyanine on cellulose (1998) J. Chem. Soc., Faraday Trans., 94 (3), pp. 419-425
  • Rodriguez, H.B., Lagorio, M.G., San Román, E., Rose Bengal adsorbed on microgranular cellulose. Evidence of fluorescent dimers (2004) Photochem. Photobiol. Sci., 3, pp. 674-680
  • Zeug, A., Zimmermann, J., Lagorio, M.G., San Román, E., Microcrystalline cellulose as a carrier for hydrophobic photosensitizers in water (2002) Photochem. Photobiol. Sci., 1, pp. 198-203
  • Iriel, A., Lagorio, M.G., Dicelio, L.E., San Román, E., Photophysics of supported dyes: Phthalocyanine on silanized silica (2002) Phys. Chem. Chem. Phys., 4, pp. 224-231
  • Lagorio, M.G., San Román, E., Zeug, A., Zimmermann, J., Roeder, B., Photophysics on surfaces: Absorption and luminescence properties of pheophorbide-A on cellulose (2001) Phys. Chem. Chem. Phys., 3, pp. 1524-1529
  • Gausman, H.W., Allen, W.A., Optical Parameters of Leaves of 30 Plant species (1973) Plant Physiol., 52, pp. 57-62
  • Barder, J., (1992) The Photosystems: Structure, Function and Molecular Biology, , Elsevier, New York
  • Nanba, O., Satoh, K., Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptide and cytochrome (1987) Proc. Natl. Acad. Sci. U. S. A., 84, pp. 109-112
  • Deisenhofer, J., Norris, J.R., (1993) The Photosynthetic Reaction Center, 2. , Academic Press, London
  • Leong, T.Y., Anderson, J.M., Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. II. Regulation of electron transport capacities, electron carriers, coupling factor (CF1) activity and rates of photosynthesis (1984) Photosynth. Res., 5, pp. 117-128
  • Leong, T.Y., Anderson, J.M., Light-quality and irradiance adaptation of the composition and function of peathylakoid membranes (1986) Biochim. Biophys. Acta, 850, pp. 57-63
  • Mc Donald, M.S., (2003) Photobiology of Higher Plants, pp. 121-122. , John Wiley and Sons Ltd, Chichester, England, ch. 4
  • Brugnoli, E., Scartazza, A., De Tullio, M.C., Monteverdi, M.C., Lauteri, M., Augusti, A., Zeaxanthin and non-photohemical quenching in sun and shade leaves of C3 and C4 plants (1998) Physiol. Plant., 104, pp. 727-734

Citas:

---------- APA ----------
Ospina Calvo, B., Parapugna, T.L. & Lagorio, M.G. (2017) . Variability in chlorophyll fluorescence spectra of eggplant fruit grown under different light environments: A case study. Photochemical and Photobiological Sciences, 16(5), 711-720.
http://dx.doi.org/10.1039/c6pp00475j
---------- CHICAGO ----------
Ospina Calvo, B., Parapugna, T.L., Lagorio, M.G. "Variability in chlorophyll fluorescence spectra of eggplant fruit grown under different light environments: A case study" . Photochemical and Photobiological Sciences 16, no. 5 (2017) : 711-720.
http://dx.doi.org/10.1039/c6pp00475j
---------- MLA ----------
Ospina Calvo, B., Parapugna, T.L., Lagorio, M.G. "Variability in chlorophyll fluorescence spectra of eggplant fruit grown under different light environments: A case study" . Photochemical and Photobiological Sciences, vol. 16, no. 5, 2017, pp. 711-720.
http://dx.doi.org/10.1039/c6pp00475j
---------- VANCOUVER ----------
Ospina Calvo, B., Parapugna, T.L., Lagorio, M.G. Variability in chlorophyll fluorescence spectra of eggplant fruit grown under different light environments: A case study. Photochem. Photobiol. Sci. 2017;16(5):711-720.
http://dx.doi.org/10.1039/c6pp00475j