Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Fluorescence is emitted by diverse living organisms. The analysis and interpretation of these signals may give information about their physiological state, ways of communication among species and the presence of specific chemicals. In this manuscript we review the state of the art in the research on the fluorescence emitted by plant leaves, fruits, flowers, avians, butterflies, beetles, dragonflies, millipedes, cockroaches, bees, spiders, scorpions and sea organisms and discuss its relevance in nature. © 2015 The Royal Society of Chemistry and Owner Societies.

Registro:

Documento: Artículo
Título:Reviewing the relevance of fluorescence in biological systems
Autor:Lagorio, M.G.; Cordon, G.B.; Iriel, A.
Filiación:INQUIMAE/D.Q.I.A y Q.F., Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
LART, IFEVA, FAUBA-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Argentina
INPA(UBA-CONICET)/CETA, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Argentina
Año:2015
Volumen:14
Número:9
Página de inicio:1538
Página de fin:1559
DOI: http://dx.doi.org/10.1039/c5pp00122f
Título revista:Photochemical and Photobiological Sciences
Título revista abreviado:Photochem. Photobiol. Sci.
ISSN:1474905X
CODEN:PPSHC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1474905X_v14_n9_p1538_Lagorio

Referencias:

  • Braslavsky, S.E., Glossary of Terms used in Photochemistry, 3rd edition (IUPAC recommendations 2006) (2007) Pure Appl. Chem., 79, p. 293
  • Valeur, B., Berberan-Santos, M.N., A Brief History of Fluorescence and Phosphorescence before the Emergence of Quantum Theory (2011) J. Chem. Educ., 88, p. 731
  • Monardes, N., Historia Medicinal de Las Cosas Que Se Traen de Nuestras Indias Occidentales Que Sirven en Medicina, 1565, p. 1
  • Acuña, A.U., Amat-Guerri, F., Early History of Solution Fluorescence: The Lignum nephriticum of Nicolás Monardes (2008) Fluorescence of Supermolecules, Polymers and Nanosystems, 4, p. 3. , Springer Series on Fluorescence, ed. M. N. Berberan-Santos, Springer Verlag, Berlin, p
  • Acuña, A.U., More Thoughts on the Narra Tree Fluorescence (2007) J. Chem. Educ., 84, p. 231
  • De Sahagún, B., Florentine Codex, Historia General de Las Cosas de Nueva España, 3, p. 95. , ed. C. M. de Bustamante, p. 1577 and p. 231
  • Acuña, A.U., Amat-Guerri, F., Morcillo, P., Liras, M., Rodriguez, B., Structure and Formation of the Fluorescent Compound of Lignum nephriticum (2009) Org. Lett., 11, p. 3020
  • Brewster XIX, D., On the Colours of Natural Bodies (1834) Trans. - R. Soc. Edinburgh, 12, p. 538
  • Brewster, D., On the Colours of Natural Bodies (1836) London Edinburgh Philos. Mag. J. Sci., 8, p. 468
  • Honigsbaum, M., Willcox, M., (2005) Cinchona in Traditional Medicinal Plants and Malaria, p. 22. , ed. M. Willcox, G. Bodeker and Rasoanaivo, CRC Press, Boca Raton, Florida, USA, ch. 2, p
  • Herschel, J.F.W., On a case of superficial colour presented by a homogeneous liquid internally colourless (1845) Philos. Trans. R. Soc. London, 135, p. 143
  • Stokes, G.G., On the Change of Refrangibility of Light (1852) Philos. Trans. R. Soc. London, 142, p. 463
  • Govindjee, Sixty-three years since Kautsky: Chlorophyll a fluorescence (1995) Aust. J. Plant Physiol., 22, p. 131
  • Buschmann, C., Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves (2007) Photosynth. Res., 92, p. 261
  • Moya, I., Cerovic, Z., Remote sensing of chlorophyll fluorescence: Instrumentation and analysis (2004) Chlorophyll-a Fluorescence: A Signature of Photosynthesis, p. 429. , ed. and G. C. Papageorgiou and Govindjee, Springer, Dordrecht, The Netherlands, p
  • Kautsky, H., Hirsch, A., Neue Versuche zur Kohlensäureassimilation (1931) Naturwissenschaften, 19, p. 964
  • Maxwell, K., Johnson, G.N., Chlorophyll fluorescence-a practical guide (2000) J. Exp. Bot., 51, p. 659
  • Lagorio, M.G., Chlorophyll fluorescence emission spectra in photosynthetic organisms (2011) Chlorophyll: Structure, Production and Medicinal Uses, p. 115. , ed. H. Le and E. Salcedo, Nova publisher, Hauppauge NY, ch. 4, p
  • Lichtenthaler, H.K., Buschmann, C., Knapp, M., How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio R<inf>Fd</inf> of leaves with the PAM fluorometer (2005) Photosynthetica, 43, p. 379
  • Mazzinghi, P., Agati, G., Fusi, F., (1994) Interpretation and Physiological Significance of Blue-green and Red Vegetation Fluorescence, International Geoscience and Remote Sensing Symposium (IGARSS) '94, p. 640. , ed. T. I. Stein, (invited paper), p
  • Pfündel, E., Estimating the contribution of Photosystem i to total leaf chlorophyll fluorescence (1998) Photosynth. Res., 56, p. 185
  • Iriel, A., Mendes Novo, J., Cordon, G.B., Lagorio, M.G., Atrazine and methyl viologen effects on Chlorophyll-a fluorescence revisited. Implications in photosystems emission and ecotoxicity (2014) Photochem. Photobiol., 90, p. 107
  • Lang, M., Strober, F., Lichtenthaler, H.K., Fluorescence emission spectra of plant leaves and plant constituents (1991) Radiat. Environ. Biophys., 30, p. 333
  • Lichtenthaler, H.K., Rinderle, U., The role of Chlorophyll fluorescence in the detection of stress conditions in plants (1988) CRC Crit. Rev. Anal. Chem., 19, p. S29
  • Lichtenthaler, H.K., Hák, R., Rinderle, U., The chlorophyll fluorescence ratio F690/F730 in leaves of different chlorophyll content (1990) Photosynth. Res., 25, p. 295
  • Hak, R., Lichtenthaler, H.K., Rinderle, U., Decrease of the chlorophyll fluorescence ratio F690/F730 during greening and development of leaves (1990) Radiat. Environ. Biophys., 29, p. 329
  • Agati, G., Response of the in vivo Chlorophyll fluorescence spectrum to environmental factors and laser excitation wavelength (1998) Pure Appl. Opt., 7, p. 797
  • Franck, F., Juneau, P., Popovic, R., Resolution of the Photosystem i and Photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature (2002) Biochim. Biophys. Acta, 1556, p. 239
  • Lagorio, M.G., Dicelio, L.E., Litter, M.I., San Román, E., Modeling of Fluorescence Quantum Yields of Supported dyes. Aluminum carboxyphthalocyanine on cellulose (1998) J. Chem. Soc., Faraday Trans., 94, p. 419
  • Agati, G., Fusi, F., Mazzinghi, P., A simple approach to evaluation of the reabsorption of chlorophyll fluorescence spectra in intact leaves (1993) J. Photochem. Photobiol., B, 17, p. 163
  • Gitelson, A., Buschmann, C., Lichtenthaler, H., Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements (1998) J. Plant Physiol., 152, p. 283
  • Ramos, M.E., Lagorio, M.G., True fluorescence spectra of leaves (2004) Photochem. Photobiol. Sci., 3, p. 1063
  • Cordon, G., Lagorio, M.G., Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models (2006) Photochem. Photobiol. Sci., 5, p. 735
  • Cordon, G.B., Lagorio, M.G., Optical properties of the adaxial and abaxial faces of leaves. Chlorophyll fluorescence, absorption and scattering coefficients (2007) Photochem. Photobiol. Sci., 6, p. 873
  • Mendes Novo, J., Iriel, A., Lagorio, M.G., Modelling chlorophyll fluorescence of kiwi fruit (Actinidia deliciosa) (2012) Photochem. Photobiol. Sci., 11, p. 724
  • Harris, P.J., Hartley, R.D., Detection of bound ferulic acid in cell walls of the Gramineae by ultraviolet fluorescence microscopy (1976) Nature, 259, p. 508
  • Lichtenthaler, H.K., Schweiger, J., Cell wall bound ferulic acid, the major substance of the bluegreen fluorescence emission of plants (1998) J. Plant Physiol., 152, p. 272
  • Celik, S.E., Özyürek, M., Tufan, A.N., Güçlü, K., Apak, R., Spectroscopic study and antioxidant properties of the inclusion complexes of rosmarinic acid with natural and derivative cyclodextrins (2011) Spectrochim. Acta, Part A, 78, p. 1615
  • Meyer, S., Cartelat, A., Moya, I., Cerovic, Z.G., UV induced blue-green and far-red fluorescence along wheat leaves: A potential signature of leaf ageing (2003) J. Exp. Bot., 54, p. 757
  • Goulas, Y., Moya, I., Schmuck, G., Time-resolved spectroscopy of the blue fluorescence of spinach leaves (1990) Photosynth. Res., 25, p. 299
  • Morales, F., Cartelat, A., Alvarez-Fernandez, A., Moya, I., Cerovic, Z.G., Time-resolved spectral studies of blue-green fluorescence of artichoke (Cynara cardunculus L. Var. Scolymus) leaves: Identification of chlorogenic acid as one of the major fluorophores and age-mediated changes (2005) J. Agric. Food Chem., 53, p. 9668
  • Trnkova, L., Bousova, I., Kubõcek, V., Drsata, J., Binding of naturally occurring hydroxycinnamic acids to bovine serum albumin. (2010) Nat. Sci., 2, p. 563
  • Nifli, A.P., Theodoropoulos, P.A., Munier, S., Castagnino, C., Roussakis, E., Katerinopoulos, H.E., Vercauteren, J., Castanas, E., Quercetin exhibits a specific fluorescence in cellular milieu: A valuable tool for the study of its intracellular distribution (2007) J. Agric. Food Chem., 55, p. 2873
  • Mendes Novo, J., Iriel, A., Marchi, M.C., Lagorio, M.G., Spectroscopy, Microscopy and Fluorescence Imaging of Origanum vulgare L. Basis for Nondestructive Quality Assessment (2013) Photochem. Photobiol., 89, p. 1383
  • Peer, W.A., Brown, D.E., Tague, B.W., Muday, G.K., Taiz, L., Murphy, A.S., Flavonoid accumulation patterns of transparent testa mutants of arabidopsis (2001) Plant Physiol., 126, p. 536
  • Yaryura, P., Cordon, G., Leon, M., Kerber, N., Pucheu, N., Rubio, G., Garcia, A., Lagorio, M.G., Effect of phosphorus deficiency on reflectance and chlorophyll fluorescence of cotyledons of oilseed rape (Brassica napus L.) (2009) J. Agron. Crop Sci., 195, p. 186
  • Morales, F., Cerovic, Z.G., Moya, I., Characterization of blue-green fluorescence in the mesophyll of sugar beet (Beta vulgaris L.) leaves affected by iron deficiency (1994) Plant Physiol., 106, p. 127
  • Stober, F., Lang, M., Lichtenthaler, H.K., Blue, green, and red fluorescence emission signatures of green, etiolated, and white leaves (1994) Remote Sens. Environ., 47, p. 65
  • Stober, F., Lichtenthaler, H.K., Studies on the localization and spectral characteristics of the fluorescence emission of differently pigmented wheat leaves (1993) Bot. Acta, 106, p. 365
  • Lang, M., Lichtenthaler, H.K., Changes in the blue-green and red fluorescence-emission spectra of beach leaves during the autumnal chlorophyll breakdown (1991) J. Plant Physiol., 138, p. 550
  • Chappelle, E.W., Wood, F.M., McMurtrey, J.E., Newcomb, W.W., Laser-induced fluorescence of green plants. 1: A technique for the remote detection of plant stress and species differentiation (1984) Appl. Opt., 23, p. 134
  • Iriel, A., Dundas, G., Fernández Cirelli, A., Gabriela Lagorio, M., Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants (2015) Chemosphere, 119, p. 697
  • Blanke, M.M., Lenz, F., Fruit Photosynthesis (1989) Plant Cell Environ., 12, p. 31
  • Noh, H.K., Lu, R., Hyperspectral laser-induced fluorescence imaging for assessing apple fruit quality (2007) Postharvest Biol. Technol., 43, p. 193
  • Beaudry, R.M., Song, J., Deng, W., Mir, N., Armstrong, P., Timm, E., Chlorophyll fluorescence: A nondestructive tool for quality measurements of stored apple fruit (1997) Proc. International Conference on Sensors for Nondestructive Testing: Measuring the Quality of Fresh Fruits and Vegetables, p. 56
  • DeEll, J.R., Toivonen, P.M.A., Use of chlorophyll fluorescence in postharvest quality assessments of fruits and vegetables (2003) Practical Applications of Chlorophyll Fluorescence in Plant Biology, p. 203. , ed. J. R. DeEll and M. A. Toivonen, Kluwer Academic Publishers, London, ch. 7, p
  • Song, J., Deng, W., Beaudry, R.M., Changes in chlorophyll fluorescence of apple fruit during maturation, ripening, and senescence (1997) HortScience, 32, p. 891
  • DeEll, J.R., Prange, R.K., Murr, D.P., Chlorophyll fluorescence as a potential indicator of controlled-atmosphere disorders in Marshall McIntosh apples (1995) HortScience, 30, p. 1084
  • DeEll, J.R., Prange, R.K., Murr, D.P., Chlorophyll fluorescence of Delicious apples at harvest as a potential predictor of superficial scald development during storage (1997) Postharvest Biol. Technol., 9, p. 1
  • Lechaudel, M., Urban, L., Joas, J., Chlorophyll fluorescence, a non destructive method to assess maturity of mango fruits (cv. 'Cogshall') without growth conditions bias (2010) J. Agric. Food Chem., 58, p. 7532
  • Nedbal, L., Soukupova, J., Whitmarsh, J., Trtilek, M., Postharvest imaging of chlorophyll fluorescence from lemons can be used to predict fruit quality (2000) Photosynthetica, 28, p. 571
  • Ramos, M.E., Lagorio, M.G., A model considering light reabsorption processes to correct in vivo chlorophyll fluorescence spectra in apples (2006) Photochem. Photobiol. Sci., 5, p. 508
  • Prange, R.K., DeLong, J.M., Leyte, J.C., Harrison, P.A., Oxygen concentration affects chlorophyll fluorescence in chlorophyll-containing fruit (2002) Postharvest Biol. Technol., 24, p. 201
  • Woolf, A.B., Laing, W.A., Avocado fruit skin fluorescence following hot water treatment and pretreatments (1996) J. Am. Soc. Hortic. Sci., 121, p. 147
  • Gross, J., Ohad, I., In vivo fluorescence spectroscopy of chlorophyll in various unripe and ripe fruit (1983) Photochem. Photobiol., 37, p. 195
  • Vargas, A.M., Kim, M.S., Tao, Y., Lefcourt, A., Chen, Y.-R., (2004) Safety Inspection of Cantaloupes and Strawberries Using Multispectral Fluorescence Imaging Techniques, Paper Number 043056, ASAE Annual Meeting
  • Murkowski, A., Heat Stress and Spermidine: Effect on Chlorophyll fluorescence in tomato plants (2001) Biol. Plant., 44, p. 53
  • Donnini, S., Guidi, L., Degl'Innocenti, E., Zocchi, G., Image changes in chlorophyll fluorescence of cucumber leaves in response to iron deficiency and resupply (2013) J. Plant Nutr. Soil Sci., 176, p. 734
  • Kumke, M., Löhmannsröben, H.-G., Buschmann, C., Langsdorf, G., Lichtenthaler, H.K., Saito, Y., Rizkallaf, J., Hashimoto, A., Fluorescence (2009) Optical Monitoring of Fresh and Processed Agricultural Crops, p. 285. , ed. M. Zude, CRC Press, Boca Raton, Florida, USA, ch. 4, p
  • Maguire, Y.P., Haard, N.F., Fluorescent product accumulation in ripening fruit (1975) Nature, 258, p. 599
  • Katz, M.L., Robison, W.G., Jr., What is lipofuscin? Defining characteristics and differentiation from other autofluorescent lysosomal storage bodies (2002) Arch. Gerontol. Geriatr., 34, p. 169
  • Yang, S., Su, X., Prasad, K.N., Yang, B., Cheng, G., Chen, Y., Yang, E., Jiang, Y., Oxidation and peroxidation of postharvest banana fruit during softening (2008) Pak. J. Bot., 40, p. 2023
  • Grotewold, E., The genetics and biochemistry of floral pigments (2006) Annu. Rev. Plant Biol., 57, p. 761
  • Thorp, R.W., Briggs, D.L., Estes, J.R., Erickson, E.H., Nectar fluorescence under ultravioleta irradiation (1975) Science, 189, p. 476
  • Strack, D., Vogt, T., Schliemann, W., Recent advances in betalain research (2003) Phytochemistry, 62, p. 247
  • Azeredo, H., Betalains: Properties, sources, applications, and stability-a review (2009) Int. J. Food Sci. Technol., 44, p. 2365
  • Stintzing, F.C., Carle, R., Functional properties of anthocyanins and betalains in plants, food, and in human nutrition (2004) Trends Food Sci. Technol., 15, p. 19
  • Gandía-Herrero, F., Escribano, J., García-Carmona, F., Betaxanthins as pigments responsible for visible fluorescence in flowers (2005) Planta, 222, p. 586
  • Gandía-Herrero, F., García-Carmona, F., Escribano, J., Botany: Floral fluorescence effect (2005) Nature, 437, p. 334
  • Gandía-Herrero, F., García-Carmona, F., Escribano, J., A novel method using high-performance liquid chromatography with fluorescence detection for the determination of betaxanthins (2005) J. Chromatogr., A, 1078, p. 83
  • Gandía-Herrero, F., García-Carmona, F., Escribano, J., Development of a protocol for the semi-synthesis and purifcation of betaxanthins (2006) Phytochem. Anal., 17, p. 262
  • Gandía-Herrero, F., Escribano, J., García-Carmona, F., Structural implications on color, Fluorescence, and antiradical activity in betalains (2010) Planta, 232, p. 449
  • Ono, E., Fukuchi-Mizutani, M., Nakamura, N., Fukui, Y., Yonekura-Sakakibara, K., Yamaguchi, M., Nakayama, T., Tanaka, Y., Yellow flowers generated by expression of the aurone biosynthetic pathway (2006) Proc. Natl. Acad. Sci. U. S. A., 103, p. 11075
  • Shanker, N., Dilek, O., Mukherjee, K., McGee, D.W., Bane, S.L., Aurones: Small molecule visible range fluorescent probes suitable for biomacromolecules (2011) J. Fluoresc., 21, p. 2173
  • Mazza, G., Miniati, E., (1993) Anthocyanins in Fruits, Vegetables, and Grains, p. 29. , CRC press, ch. 2, p
  • Gitelson, A.A., Merzlyak, M.N., Chivkunova, O.B., Optical properties and nondestructive estimation of anthocyanin content in plant leaves (2001) Photochem. Photobiol., 74, p. 38
  • Drabent, R., Pliszka, B., Olszewska, T., Fluorescence properties of plant anthocyanin pigments. I. Fluorescence of anthocyanins in Brassica oleracea L. Extracts (1999) J. Photochem. Photobiol., B, 50, p. 53
  • Iriel, A., Lagorio, M.G., Biospectroscopy of Rhododendron indicum flowers. Non-destructive assessment of anthocyanins in petals using a reflectance-based method (2009) Photochem. Photobiol. Sci., 8, p. 337
  • Iriel, A., Lagorio, M.G., Implications of reflectance and fluorescence of Rhododendron indicum flowers in biosignaling (2010) Photochem. Photobiol. Sci., 9, p. 342
  • Iriel, A., Lagorio, M.G., Is the flower fluorescence relevant in biocommunication? (2010) Naturwissenschaften, 97, p. 915
  • Wolf, F.T., Stevens, M.V., The fluorescence of carotenoids (1967) Photochem. Photobiol., 6, p. 597
  • Gillbro, T., Cogdell, R.J., Carotenoid fluorescence (1989) Chem. Phys. Lett., 158, p. 312
  • Völker, O., Ueber fluoreszierende, gelbe federpigmente bei papagein, eine neue klasse von federfarbstoffen (1937) J. Ornithol., 85, p. 136
  • McGraw, K.J., Nogare, M.C., Carotenoid pigments and the selectivity of psittacofulvin-based coloration systems in parrots (2004) Comp. Biochem. Physiol., B: Biochem. Mol. Biol., 138, p. 229
  • Stradi, R., Pini, E., Celentano, G., The chemical structure of the pigments in Ara macao plumage (2001) Comp. Biochem. Physiol., B: Biochem. Mol. Biol., 130, p. 57
  • Pearn, S.M., Bennett, A.T.D., Cuthill, I.C., The role of ultraviolet-A reflectance and ultraviolet-A induced fluorescence in the appearance of budgerigar plumage: Insights from spectrofluorometry and reflectance spectrophotometry (2003) Proc. R. Soc. London, Ser. B, 270, p. 859
  • Arnold, K.E., Owens, I.P.F., Marshall, N.J., Fluorescent signaling in parrots (2002) Science, 295, p. 92
  • Pearn, S.M., Bennett, A.T.D., Cuthill, I.C., The role of ultraviolet-A reflectance and ultraviolet-A-induced fluorescence in budgerigar mate choice (2003) Ethology, 109, p. 961
  • Hausmann, F., Arnold, K.E., Marshall, N.J., Owens, I.P.F., Ultraviolet signals in birds are special (2003) Proc. R. Soc. London, Ser. B, 270, p. 61
  • Bennett, A.T.D., Cuthill, I.C., Partridge, J.C., Maier, E.J., Ultraviolet vision and mate choice in zebra finches (1996) Nature, 380, p. 433
  • Bennett, A.T.D., Cuthill, I.C., Partridge, J.C., Lunau, K., Ultraviolet plumage colors predict mate preferences in starlings (1997) Proc. Natl. Acad. Sci. U. S. A., 94, p. 8618
  • Andersson, S., Amundsen, T., Ultraviolet colour vision and ornamentation in bluethroats (1997) Proc. R. Soc. London, Ser. B, 264, p. 1587
  • Hunt, S., Bennett, A.T.D., Cuthill, I.C., Griffiths, R., Blue tits are ultraviolet tits (1998) Proc. R. Soc. London, Ser. B, 265, p. 451
  • Sheldon, B.C., Andersson, S., Griffith, S.C., Örnborg, J., Sendecka, J., Ultraviolet colour variation influences blue tit sex ratios (1999) Nature, 402, p. 874
  • Siitari, H., Honkavaara, J., Huhta, E., Viitala, J., Ultraviolet reflection and female mate choice in the pied flycatcher, Ficedula hypoleuca (2002) Anim. Behav., 63, p. 97
  • Pearn, S.M., Bennett, A.T.D., Cuthill, I.C., Ultraviolet vision, fluorescence and mate choice in a parrot, the budgerigar Melopsittacus undulates (2001) Proc. R. Soc. London, Ser. B, 268, p. 2273
  • Barreira, A.S., Lagorio, M.G., Lijtmaer, D.A., Lougheed, S.C., Tubaro, P.L., Fluorescent and ultraviolet sexual dichromatism in the blue winged parrotlet (2012) J. Zool., 288, p. 135
  • Owens, I.P.F., Hartley, I.R., Sexual dimorphism in birds: Why are there so many different forms of dimorphism? (1998) Proc. R. Soc. London, Ser. B, 265, p. 397
  • Badyaev, A.V., Hill, G.E., Avian sexual dichromatism in relation to phylogeny and ecology (2003) Annu. Rev. Ecol. Evol. Syst., 34, p. 27
  • McGraw, K.J., Toomey, M.B., Nolan, P.M., Morehouse, N.I., Massaro, M., Jouventin, P., A description of unique fluorescent yellow pigments in penguin feathers (2007) Pigm. Cell Res., 20, p. 301
  • Thomas, D.B., McGoverin, C.M., McGraw, K.J., James, H.F., Madden, O., Vibrational spectroscopic analyses of unique yellow feather pigments (spheniscins) in penguins (2013) J. R. Soc. Interface, 10, p. 20121065
  • Landon, C., Thouzeau, C., Labbe, H., Bulet, P., Vovelle, F., Solution structure of spheniscin, a β-defensin from the penguin stomach (2004) J. Biol. Chem., 279, p. 30433
  • Mottram, J.C., Cockayne, E.A., Fluorescence in Lepidoptera (1920) Proc. Ent. Soc. London, p. xxxvi
  • Cockayne, E.A., The distribution of fluorescent pigments in Lepidoptera (1924) Trans. R. Ent. Soc. London, 72, p. 1
  • Phillips, L.S., Fluorescence in the colors of certian Lepidoptera observed under ultraviolet light (1959) J. Lepidopterists Soc., 13, p. 73
  • Rawson, J.W., Study of fluorescent pigments in Lepidoptera by means of paper partition chromatography (1968) J. Lepidopterists Soc., 22, p. 27
  • Ziegler, I., Harmsen, R., The biology of pteridines in insects (1970) Adv. Insect Physiol., 6, p. 139
  • Watt, W.B., Pteridine biosynthesis in the butterfly Colias eurytheme (1967) J. Biol. Chem., 242, p. 565
  • Vukusic, P., Hooper, I., Directionally Controlled Fluorescence Emission in Butterflies (2005) Science, 310, p. 1151
  • Ball, P., http://www.nature.com/news/2005/051114/full/news051114-11.html, Butterflies shine brighter by design, (accessed 3.18. 2015); Van Hooijdonk, E., Barthou, C., Vigneron, J.P., Berthier, S., Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae) (2011) J. Nanophotonics, 5, p. 053525
  • Van Hooijdonk, E., Barthou, C., Vigneron, J.P., Berthier, S., Angular dependence of structural fluorescent emission from the scales of the male butterfly Troïdes magellanus (Papilionidae) (2012) J. Opt. Soc. Am. B, 29, p. 1104
  • Lawrence, R.F., Fluorescence in arthropoda (1954) J. Ent. Soc. S. Africa, 17, p. 167
  • Israelowitz, M., Rizvi, S.H.W., Von Schroeder, H.P., Fluorescence of the fire chaser beetle, Melanophila acuminate (2007) J. Lumin., 126, p. 149
  • Van Hooijdonk, E., Barthou, C., Vigneron, J.P., Berthier, S., Yellow structurally modified fluorescence in the longhorn beetles Celosterna pollinosa sulfurea and Phosphorus virescens (Cerambycidae) (2013) J. Lumin., 136, p. 313
  • Abels, J.P., Ludescher, R.D., Native fluorescence from juvenile stages of common food storage insects (2003) J. Agric. Food Chem., 51, p. 544
  • Welch, V.L., Van Hooijdonk, E., Intrater, N., Vigneron, J., Fluorescence in insects (2012) Proc. SPIE, Nat. Light: Light in Nat. IV, 8480, p. 848004
  • Neff, D., Frazier, S.F., Quimby, L., Wang, R.T., Zill, S., Identification of resilin in the leg of cockroach, Periplaneta americana: Confirmation by a simple method using pH dependence of UV fluorescence (2000) Arthropod Struct. Dev., 29, p. 75
  • Donoughe, S., Crall, J.D., Merz, R.A., Combes, S.A., Resilin in dragonfly and damselfly wings and its implications for wing flexibility (2011) J. Morphol., 272, p. 1409
  • Balu, R., Whittaker, J., Dutta, N.K., Elvin, C.M., Choudhury, N.R., Multi-responsive biomaterials and nanobioconjugates from resilin-like protein polymers (2014) J. Mater. Chem. B, 2, p. 5936
  • Kuse, M., Yanagi, M., Tanaka, E., Tani, N., Nishikawa, T., Identification of a fluorescent compound in the cuticle of the train Millipede Parafontaria laminata armiguera (2010) Biosci. Biotechnol. Biochem., 74, p. 2307
  • Sheehy, M.R.J., Widespread occurrence of fluorescence morphological lipofuscin in the crustacean brain (1990) J. Crustacean Biol., 10, p. 613
  • Willis, E.R., Roth, L.R., Fluorescence in cockroaches (1956) Ann. Entomol. Soc. Am., 49, p. 495
  • Young, R.G., Tappel, A.L., Fluorescent pigment and pentane production by lipid perodoxidation in honey bees, Apis Mellifera (1978) Exp. Gerontol., 13, p. 457
  • Nemesio, A., Sistematics, morphology and physiology. Fluorescent colors in orchid bees (Hymenoptera: Apidae) (2005) Neotrop. Entomol., 34, p. 933
  • Lawrence, R.R., Fluorescence in arthropoda (1954) J. Ent. Soc. S. Africa, 17, p. 167
  • Stachel, S.J., Stockwell, S.A., Van Vranken, D.L., The fluorescence of scorpions and cataractogenesis (1999) Chem. Biol., 6, p. 531
  • Frost, L.M., Butler, D.R., O'Dell, B., Fet, V., A coumarin as a fluorescent compound in scorpion cuticle (2001) Scorpions 2001: In Memoriam, Gary A. Polis, pp. 365-368. , British Arachnological Society, Burnham Beeches, Buckinghamshire, UK
  • Gaffin, D.D., Bumm, L.A., Taylor, M.S., Popokina, N.V., Manna, S., Scorpion fluorescence and reaction to light (2012) Anim. Behav., 83, p. 429
  • Andrews, K., Reed, S.M., Masta, S.E., Spiders fluoresce variably across many taxa (2007) Biol. Lett., 3, p. 265
  • Lim, M.L.M., Land, M.F., Li, D., Sex-specific UV and fluorescence signals in jumping spiders (2007) Science, 315, p. 481
  • Shimomura, O., The discovery of aequorin and green fluorescent protein (2005) J. Microsc., 217, p. 3
  • Shimomura, O., Johnson, F.H., Saiga, Y., Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea (1962) J. Cell. Comp. Physiol., 59, p. 223
  • Labas, Y.A., Gurskaya, N.G., Yanushevich, Y.G., Fradkov, A.F., Lukyanov, K.A., Lukyanov, S.A., Matz, M.V., Diversity and evolution of the green fluorescent protein family (2002) Proc. Natl. Acad. Sci. U. S. A., 99, p. 4256
  • Alieva, N.O., Konzen, K.A., Field, S.F., Meleshkevitch, E.A., Hunt, M.E., Beltran-Ramirez, V., Miller, D.J., Matz, M.V., Diversity and evolution of coral fluorescent proteins (2008) PLoS One, 3, p. e2680
  • Haddock, S.H.D., Dunn, C.W., Pugh, P.R., Schnitzler, C.E., Bioluminescent and red-fluorescent lures in a deep-sea siphonophore (2005) Science, 309, p. 263
  • Haddock, S.H.D., Case, J.F., Bioluminescence spectra of shallow and deep-sea gelatinous zooplankton: Ctenophores, medusae and siphonophores (1999) Mar. Biol., 133, p. 571
  • Bonnett, R., Head, E.J., Herring, P.J., Porphyrin pigments of some deep-sea medusa (1979) J. Mar. Biol. Assoc., 59, p. 565
  • Shagin, D.A., Barsova, E.V., Yanushevich, Y.G., Fradkov, A.F., Lukyanov, K.A., Labas, Y.A., Matz, M.V., GFP-like proteins as ubiquitous metazoan superfamily: Evolution of functional features and structural complexity (2004) Mol. Biol. Evol., 21, p. 841
  • Mazel, C.H., Cronin, T.W., Caldwell, R.L., Marshall, N.J., Fluorescent enhancement of signaling in a mantis shrimp (2004) Science, 303, p. 51
  • Deheyn, D.D., Kubokawa, K., McCarthy, J.K., Murakami, A., Porrachia, M., Rouse, G.W., Holland, N.D., Endogenous green fluorescent protein (GFP) in amphioxus (2007) Biol. Bull., 213, p. 95
  • Yu, J.K., Holland, N.D., Holland, L.Z., Tissue-specific expression of FoxD reporter constructs in amphioxus embryos (2004) Dev. Biol., 274, p. 452
  • Haddock, S.H., Mastroianni, N., Christianson, L.M., A photoactivatable green-fluorescent protein from the phylum Ctenophora (2010) Proc. Biol. Sci. B, 277, p. 1155
  • Salih, A., Larkum, A., Cox, G., Kühl, M., Hoegh-Guldberg, O., Fluorescent pigments in corals are photoprotective (2000) Nature, 408, p. 850
  • Dove, S.G., Hoegh-Guldberg, O., Ranganathan, S., Major colour patterns of reef-building corals are due to a family of GFP-like proteins (2001) Coral Reefs, 19, p. 197
  • Mazel, C.H., Fuchs, E., Contribution of fluorescence to the spectral signature and perceived color of corals (2003) Limnol. Oceanogr., 48, p. 390
  • Matz, M.V., Marshall, N.J., Vorobyev, M., Are corals colorful? (2006) Photochem. Photobiol., 82, p. 345
  • Oswald, F., Schmitt, F., Leutenegger, A., Ivanchenko, S., D'Angelo, C., Salih, A., Maslakova, S., Wiedenmann, J., Contributions of host and symbiont pigments to the coloration of reef corals (2007) FEBS J., 274, p. 1102
  • Kawaguti, S., Effect of the green fluorescent pigment on the productivity of the reef corals (1969) Micronesica, 5, p. 121
  • Salih, A., Hoegh-Guldberg, O., Cox, G., Photoprotection of symbiotic dinoflagellates by fluorescent pigments in reef corals (1998) Proceedings of the Australian Coral Reef Society 75th Anniversary Conference, , Ed. School of Marine Science, University of Queensland Brisbane, Queensland, Australia
  • Dunlap, W.C., Shick, J.M., Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: A biochemical and environmental perspective (1998) J. Phycol., 34, p. 418
  • Lesser, M.P., Stochaj, W.R., Tapley, D.W., Shick, J.M., Bleaching in coral reef anthozoans: Effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen (1990) Coral Reefs, 8, p. 225
  • Shick, J.M., Lesser, M.P., Stochaj, W.R., Ultraviolet radiation and photooxidative stress in symbiotic dinoflagellate anthozoa: The sea anemone Phyllodiscus semoni and the octocoral Clavularia sp. (1991) Symbiosis, 10, p. 145
  • Lesser, M.P., Oxidative stress causes coral bleaching during exposure to elevated temperatures (1997) Coral Reefs, 16, p. 187
  • Hoegh-Guldberg, O., Climate change, coral bleaching and the future of the world's coral reefs (1999) Mar. Freshwater Res., 50, p. 839
  • Ward, W.W., (2002) Fluorescent Proteins: Who's got'Em and Why? in Bioluminescence and Chemiluminescence, p. 22. , World Scientific Publishers, Singapore, Singapore, p
  • Iglesias-Prieto, R., Trench, R.K., Acclimation and adaption to irradiance in symbiotic dinoflagellates. II. Response of chlorophyll-protein complexes to different photon-flux densities (1997) Mar. Biol., 130, p. 23
  • Gorbunov, M.Y., Kolber, Z.S., Lesser, M.P., Falkowski, P.G., Photosynthesis and photoprotection in symbiotic corals (2001) Limnol. Oceanogr., 46, p. 75
  • Matz, M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Zaraisky, A.G., Markelov, M.L., Lukyanov, S.A., Fluorescent proteins from nonbioluminescent Anthozoa species (1999) Nat. Biotechnol., 17, p. 969
  • Henderson, J.N., Remington, S.J., Crystal structures and mutational analysis of amFP486, a cyan fluorescent protein from Anemonia majano (2005) Proc. Natl. Acad. Sci. U. S. A., 102, p. 12712
  • Field, S.F., Bulina, M.Y., Kelmanson, I.V., Bielawski, J.P., Matz, M.V., Adaptive evolution of multicolored fluorescent proteins in reef-building corals (2006) J. Mol. Evol., 62, p. 332
  • Michiels, N.K., Anthes, N., Hart, N.S., Herler, J., Meixner, A.J., Schleifenbaum, F., Schulte, G., Wucherer, M.F., Red fluorescence in reef fish: A novel signalling mechanism? (2008) BMC Ecol., 8, p. 16
  • Sparks, J.S., Schelly, R.C., Smith, W.L., Davis, M.P., Tchernov, D., Pieribone, V.A., Gruber, D.F., The covert world of fish biofluorescence: A phylogenetically widespread and phenotypically variable phenomenon (2014) PLoS One, 9, p. e83259
  • Douglas, R.H., Partridge, J.C., Dulai, K., Hunt, D., Mullineaux, C.W., Tauber, A.Y., Hynninen, P.H., Dragon fish see using chlorophyll (1998) Nature, 393, p. 423
  • Douglas, R.H., Mullineaux, C.W., Partridge, J.C., Long-wave sensitivity in deep-sea stomiid dragonfish with far-red bioluminescence: Evidence for a dietary origin of the chlorophyll-derived retinal photosensitizer of Malacosteus Niger (2000) Philos. Trans. R. Soc. London, Ser. B, 355, p. 1269
  • Roth, M.S., Deheyn, D.D., Effects of cold stress and heat stress on coral fluorescence in reef-building corals (2013) Sci. Rep., 3, p. 1421
  • Meadows, M.G., Anthes, N., Dangelmayer, S., Alwany, M.A., Gerlach, T., Schulte, G., Sprenger, D., Michiels, N.K., Red fluorescence increases with depth in reef fishes, supporting a visual function, not UV protection (2014) Proc. R. Soc. London, B, 281, p. 20141211
  • Gerlach, T., Sprenger, D., Michiels, N.K., Fairy wrasses perceive and respond to their deep red fluorescent coloration (2014) Proc. R. Soc. London, B, 281, p. 20140787
  • Lobel, P.S., Diel, lunar, and seasonal periodicity in the reproductive behavior of the pomacanthid fish, Centropyge potteri, and some other reef fishes in Hawaii (1978) Pac. Sci., 32, p. 193
  • Takemura, A., Rahman, M.D., Nakamura, S., Park, Y.J., Takano, K., Lunar cycles and reproductive activity in reef fishes with particular attention to rabbitfishes (2004) Fish Fish., 5, p. 317
  • Jung, T., Bader, N., Grune, T., Lipofuscin: Formation, distribution, and metabolic consequences (2007) Ann. N. Y. Acad. Sci., 1119, p. 97
  • Jung, T., Höhn, A., Grune, T., Lipofuscin: Detection and quantification by microscopic techniques (2010) Advanced Protocols in Oxidative Stress II, pp. 173-193. , Ed. Humana Press, New York, USA
  • Jerlov, N.G., (1968) Optical Oceanography, , American Elsevier Publ. Co., New York, USA
  • Lythgoe, J.N., (1979) Ecology of Vision, 3, p. 81. , Clarendon Press, Oxford University Press, Oxford, UK, ch., p
  • Olenych, S.G., Claxton, N.S., Ottenberg, G.K., Davidson, M.W., The fluorescent protein color palette (2006) Curr. Protoc. Cell Biol., p. 1. , UNIT 21-5
  • Vogt, A., D'Angelo, C., Oswald, F., Denzel, A., Mazel, C.H., Matz, M.V., Ivanchenko, S., Wiedenmann, J., A green fluorescent protein with photoswitchable emission from the deep sea (2008) PLoS One, 3 (11), p. e3766
  • Eaton, D.F., Reference materials for fluorescence measurements (1988) Pure Appl. Chem., 60, p. 1107
  • Silverstein, R.M., Bassler, G.C., Morril, T.C., (1994) Identificação Espectrométrica de Compostos Orgânicos, , Guanabara Koogan., Rio de Janeiro, Brasil
  • Chalfie, M., Green fluorescent protein (1995) Photochem. Photobiol., 62, p. 651
  • Wucherer, M.F., Michiels, N.K., Regulation of red fluorescent light emission in a cryptic marine fish (2014) Front. Zool., 11, p. 1
  • Acuña, A.U., Amat-Guerri, F., Morcillo, P., Liras, M., Rodríguez, B., Structure and Formation of the Fluorescent Compound of Lignum nephriticum (2009) Org. Lett., 11, p. 3020
  • Morales, F., Cerovic, Z.G., Moya, I., Time-resolved blue-green fluorescence of sugar beet (Beta vulgaris L.) leaves. Spectroscopic evidence for the presence of ferulic acid as the main fluorophore of the epidermis (1996) Biochim. Biophys. Acta, Bioenerg., 1273, p. 251

Citas:

---------- APA ----------
Lagorio, M.G., Cordon, G.B. & Iriel, A. (2015) . Reviewing the relevance of fluorescence in biological systems. Photochemical and Photobiological Sciences, 14(9), 1538-1559.
http://dx.doi.org/10.1039/c5pp00122f
---------- CHICAGO ----------
Lagorio, M.G., Cordon, G.B., Iriel, A. "Reviewing the relevance of fluorescence in biological systems" . Photochemical and Photobiological Sciences 14, no. 9 (2015) : 1538-1559.
http://dx.doi.org/10.1039/c5pp00122f
---------- MLA ----------
Lagorio, M.G., Cordon, G.B., Iriel, A. "Reviewing the relevance of fluorescence in biological systems" . Photochemical and Photobiological Sciences, vol. 14, no. 9, 2015, pp. 1538-1559.
http://dx.doi.org/10.1039/c5pp00122f
---------- VANCOUVER ----------
Lagorio, M.G., Cordon, G.B., Iriel, A. Reviewing the relevance of fluorescence in biological systems. Photochem. Photobiol. Sci. 2015;14(9):1538-1559.
http://dx.doi.org/10.1039/c5pp00122f