Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In recent years, different methods and techniques have been applied to study the primary photophysical processes occurring in dye-loaded light-scattering powdered samples. In spite of this, there are still no reliable methods for the determination of triplet quantum yields for this kind of systems. Laser-induced optoacoustic spectroscopy (LIOAS) has been extensively used for the determination of triplet quantum yields of dyes in solution. In a previous work, LIOAS was applied to the measurement of absolute emission quantum yields of highly fluorescent powdered samples. Excellent agreement was found with values obtained from reflectance data. In this work, we apply the same technique for the determination of triplet quantum yields of Rose Bengal and Erythrosine B adsorbed on microcrystalline cellulose. In contrast to water and other solvents, internal conversion cannot be neglected in the cellulose environment. The triplet quantum yield for both dyes is around 0.55 and does not change with dye concentration. © The Royal Society of Chemistry and Owner Societies 2012.

Registro:

Documento: Artículo
Título:Triplet quantum yields in light-scattering powder samples measured by laser-induced optoacoustic spectroscopy (LIOAS)
Autor:Tomasini, E.P.; Braslavsky, S.E.; San Román, E.
Filiación:INQUIMAE/DQIAyQF, Facultad de Ciencias Exactas Y Naturales, UBA, Buenos Aires, C1428EHA, Argentina
Max-Planck-Institut für Bioanorganische Chemie, Postfach 101365, Mülheim an der Ruhr, D 45413, Germany
Palabras clave:cellulose; erythrosine; fluorescent dye; microcrystalline cellulose; rose bengal; solvent; water; article; chemistry; laser; light; photoacoustics; quantum theory; radiation scattering; Cellulose; Erythrosine; Fluorescent Dyes; Lasers; Light; Photoacoustic Techniques; Quantum Theory; Rose Bengal; Scattering, Radiation; Solvents; Water
Año:2012
Volumen:11
Número:6
Página de inicio:1010
Página de fin:1017
DOI: http://dx.doi.org/10.1039/c2pp05362d
Título revista:Photochemical and Photobiological Sciences
Título revista abreviado:Photochem. Photobiol. Sci.
ISSN:1474905X
CODEN:PPSHC
CAS:cellulose, 61991-22-8, 68073-05-2, 9004-34-6; erythrosine, 1342-25-2, 15905-32-5, 16423-68-0, 568-63-8; microcrystalline cellulose, 39394-43-9, 51395-75-6; rose bengal, 11121-48-5, 11139-83-6, 632-68-8; water, 7732-18-5; Cellulose, 9004-34-6; Erythrosine, 16423-68-0; Fluorescent Dyes; Rose Bengal, 11121-48-5; Solvents; Water, 7732-18-5; microcrystalline cellulose
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1474905X_v11_n6_p1010_Tomasini

Referencias:

  • Montanari, J., Pérez, A.P., Di Salvo, F., Diz, V., Barnadas, R., Dicelio, L., Doctorovich, F., Romero, E.L., Photodynamic ultradeformable liposomes: Design and characterization (2007) Int. J. Pharm., 330, p. 183
  • Derycke, A.S., De Witte, P.A., Liposomes for photodynamic therapy (2004) Adv. Drug Delivery Rev., 56, p. 17
  • Konan, Y.N., Gurny, R., Allemann, E., State of the art in the delivery of photosensitizers for photodynamic therapy (2002) J. Photochem. Photobiol., B, 66, p. 89
  • Mosinger, J., Losinska, K., Abrhamova, T., Veiserova, S., Micka, Z., Nemcova, I., Mosinger, B., Determination of singlet oxygen production and antibacterial effect of nonpolar porphyrins in heterogeneous systems (2000) Anal. Lett., 33, p. 1091
  • Lin, Q., Tsuchido, T., Takano, M., Photodynamic inactivation of bacteria on immobilized a-terthienyl film (1991) Appl. Microbiol. Biotechnol., 35, p. 585
  • Luiz, M., Biasutti, M.A., García, N.A., Effect of reverse micelles on the Rose Bengal-sensitized photo-oxidation of 1- and 2-hydroxynaphthalenes (2004) Redox Rep., 9, p. 199
  • Zeug, A., Zimmermann, J., Röder, B., Lagorio, M.G., San Romaìn, E., Microcrystalline cellulose as a carrier for hydrophobic photosensitizers in water (2002) Photochem. Photobiol. Sci., 1, p. 198
  • Brigger, I., Dubernet, C., Couvreur, P., Nanoparticles in cancer therapy and diagnosis (2002) Adv. Drug Delivery Rev., 54, p. 631
  • Bechet, D., Couleaud, P., Frochot, C., Viriot, M.L., Guillemin, F., Barberi-Heyob, M., Nanoparticles as vehicles for delivery of photodynamic therapy agents (2008) Trends Biotechnol., 26, p. 612
  • Tada, D.B., Vono, L.L.R., Duarte, E.L., Itri, R., Kiyohara, P.K., Baptista, M.S., Rossi, L.M., Methylene blue-containing silica-coated magnetic particles: A potential magnetic carrier for photodynamic therapy (2007) Langmuir, 23, p. 8194
  • Moon, S.-J., Yum, J.-H., Humphry-Baker, R., Karlsson, K.M., Hagberg, D.P., Marinado, T., Hagfeldt, A., Nazeeruddin, M.K., Highly efficient organic sensitizers for solid-state dyesensitized solar cells (2009) J. Phys. Chem. C, 113, p. 16816
  • Grätzel, M., Dye-sensitized solar cells (2003) J. Photochem. Photobiol., C, 4, p. 145
  • Zhang, H., Zhou, Y., Zhang, M., Shen, T., Li, Y., Zhu, D., Photoinduced Charge Separation across Colloidal TiO2 and Fluorescein Derivatives (2002) J. Phys. Chem. B, 106, p. 9597
  • Kamat, P.V., Photochemistry on nonreactive and reactive (semiconductor) surfaces (1993) Chem. Rev., 93, p. 267
  • Ramamurthy, V., (1991) Photochemistry in Organized and Constrained Media, , VCH, New York
  • Wrighton, M.S., Ginley, D.S., Morse, D.L., A technique for the determination of absolute emission quantum yields of powdered samples (1974) J. Phys. Chem., 78, p. 2229
  • Liu, Y.S., De Mayo, P., Ware, W.R., Photophysics of polycyclic aromatic hydrocarbons adsorbed on silica gel surfaces. 3. Fluorescence quantum yields and radiative decay rate constants derived from lifetime distributions (1993) J. Phys. Chem., 97, p. 5995
  • Lagorio, M.G., Dicelio, L.E., Litter, M.I., San Román, E., Modeling of fluorescence quantum yields of supported dyes. Aluminum carboxyphthalocyanine on cellulose (1998) J. Chem. Soc., Faraday Trans., 94, p. 419
  • Mirenda, M., Lagorio, M.G., San Román, E., Photophysics on surfaces: Determination of absolute fluorescence quantum yields from reflectance spectra (2004) Langmuir, 20, p. 3690
  • Amore, S., Lagorio, M.G., Dicelio, L.E., San Román, E., Photophysical properties of supported dyes. Quantum yield calculations in scattering media (2001) Progr. React. Kinet. Mech., 26, p. 159
  • Lagorio, M.G., San Román, E., Zeug, A., Zimmermann, J., Röder, B., Photophysics on surfaces: Absorption and luminescence properties of pheophorbide-a on cellulose (2001) Phys. Chem. Chem. Phys., 3, pp. 1524-1529
  • Iriel, A., Lagorio, M.G., Dicelio, L.E., San Román, E., Photophysics of supported dyes: Phthalocyanine on silanized silica (2002) Phys. Chem. Chem. Phys., 4, p. 224
  • Rodríguez, H.B., Lagorio, M.G., San Román, E., Rose Bengal adsorbed on microgranular cellulose: Evidence on fluorescent dimers (2004) Photochem. Photobiol. Sci., 3, p. 674
  • Rodríguez, H.B., Iriel, A., San Román, E., Energy transfer among dyes on particulate solids (2006) Photochem. Photobiol., 82, p. 200
  • Rodríguez, H.B., San Román, E., Energy transfer from chemically attached rhodamine 101 to adsorbed methylene blue on microcrystalline cellulose particles (2007) Photochem. Photobiol., 83, p. 547
  • Rodríguez, H.B., San Román, E., Excitation energy transfer and trapping in dye-loaded solid particles (2008) Ann. N. Y. Acad. Sci., 1130, p. 247
  • López, S.G., Worringer, G., Rodríguez, H.B., San Román, E., Trapping of Rhodamine 6G excitation energy on cellulose microparticles (2010) Phys. Chem. Chem. Phys., 12, p. 2246
  • Wendlandt, W.W., Hecht, H.G., (1966) Reflectance Spectroscopy, , Wiley, New York
  • Kortüm, G., (1969) Reflectance Spectroscopy, , Springer Verlag, New York
  • Ruetten, S.A., Thomas, J.K., Fluorescence and triplet quantum yields of arenes on surfaces (1998) J. Phys. Chem. B, 102, p. 598
  • Braslavsky, S.E., Heibel, G., Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution (1992) Chem. Rev., 92, p. 1381
  • Gensch, T., Viappiani, C., Time-resolved photothermal methods: Accessing time-resolved thermodynamics of photoinduced processes in chemistry and biology (2003) Photochem. Photobiol. Sci., 2, p. 699
  • Andrés, G.O., Martínez-Junza, V., Crovetto, L., Braslavsky, S.E., Photoinduced electron transfer from tetrasulfonated porphyrin to benzoquinone revisited. The structural volume-normalized entropy change correlates with Marcus reorganization energy (2006) J. Phys. Chem. A, 110, p. 10185
  • Rudzki Small, J., Foster, N., Amonette, J., Autry, T., Listening to colloidal silica samples: Simultaneous measurement of absorbed and scattered light using pulsed-laser photoacoustics (2000) Appl. Spectrosc., 54, p. 1142
  • Marchi, C.M., Bilmes, S., Bilmes, G., Photophysics of Rhodamine B interacting with silver spheroids (1999) J. Colloid Interface Sci., 218, p. 112
  • Karabutov, A., Podymova, N., Letokhov, V., Time-resolved laser optoacoustic tomography of inhomogeneous media (1997) Appl. Phys. B: Lasers Opt., 63, p. 545
  • Katalnikov, I., Van Der Auweraer, M., De Schryver, F.C., The investigation of non-radiative deactivation of excited states in thin films by laser-induced opto-acoustic calorimetry (1994) J. Photochem. Photobiol., A, 77, p. 103
  • Serpa, C., Schabauer, J., Piedade, A., Monteiro, C., Pereira, M., Douglas, P., Burrows, H., Arnaut, L., Photoacoustic measurement of electron injection efficiencies and energies from excited sensitizer dyes into nanocrystalline TiO2 films (2008) J. Am. Chem. Soc., 130, p. 2008
  • Jabben, M., Schaffner, K., Pulsed-laser induced optoacoustic spectroscopy of intact leaves (1985) Biochim. Biophys. Acta, Bioenerg., 809, p. 445
  • Mauzerall, D.C., Determination of oxygen emission and uptake in leaves by pulsed, time resolved photoacoustics (1990) Plant Physiol., 94, p. 278
  • Nonell, S., Martí, C., García-Moreno, I., Costela, A., Sastre, R., Optoacoustic study of tinuvin-P and rhodamine 6G in solid polymeric matrices (2001) Appl. Phys. B: Lasers Opt., 72, p. 355
  • Tam, A.C., Patel, C.K.N., High-resolution optoacoustic spectroscopy of rare-earth oxide powders (1979) Appl. Phys. Lett., 35, p. 843
  • Tomasini, E.P., San Román, E., Braslavsky, S.E., Validation of fluorescence quantum yields for light-scattering powdered samples by laser-induced optoacoustic spectroscopy (2009) Langmuir, 25, pp. 5861-5868
  • Gratz, H., Penzkofer, A., Triplet-triplet absorption of some organic molecules determined by picosecond laser excitation and time-delayed picosecond light continuum probing (1999) J. Photochem. Photobiol., A, 127, p. 21
  • Kamat, P.V., Fox, M.A., Photophysics and photochemistry of xanthene dyes in polymer solutions and films (1984) J. Phys. Chem., 88, p. 2297
  • Murasecco-Suardi, P., Gassmann, E., Braun, A.M., Oliveros, E., Determination of the Quantum Yield of Intersystem Crossing of Rose Bengal (1987) Helv. Chim. Acta, 70, p. 1766
  • Bowers, P.G., Porter, G., Triplet state quantum yield for some aromatic hydrocarbons and xanthene dyes in dilute solution (1967) Proc. R. Soc. London, Ser. A, p. 348
  • Lessing, H., Richardt, D., Quantitative triplet photophysics by picosecond photometry (1982) J. Mol. Struct., 84, p. 281
  • Nemoto, N., Kokubun, H., Koizumi, M., Determination of the S∗-T transition probabilities of some xanthene and thiazine dyes on the basis of the T-Energy transfer. I. Experiments in ethanol solutions (1969) Bull. Chem. Soc. Jpn., 42, p. 1223
  • Encinas, M.V., Rufs, A.M., Bertolotti, S.G., Previtali, C.M., Xanthene dyes/amine as photoinitiators of radical polymerization: A comparative and photochemical study in aqueous medium (2009) Polymer, 50, p. 2762
  • Linden, S.M., Neckers, D.C., Type I and type II sensitizers based on rose Bengal onium salts (1988) Photochem. Photobiol., 47, p. 543
  • Dahl, T.A., Valdes-Aguilera, O., Midden, W.R., Neckers, D.C., Partition of Rose Bengal anion from aqueous medium into a lipophilic environment in the cell envelope of Salmonella typhimurium: Implications fot cell-type targeting in photodynamic therapy (1989) J. Photochem. Photobiol., B, 4, p. 171
  • Croce, A.C., Wyroba, E., Bottirolli, G., Distribution and retention of rose bengal and disulfonated aluminum phthalocyanine: A comparative study in unicellular eukaryote (1992) J. Photochem. Photobiol., B, 16, p. 319
  • Bezman, S.A., Burtis, P.A., Izod, T.P.J., Thayer, M.A., Photodynamic inactivation of E. coli by Rose Bengal immobilized on polystyrene beads (1978) Photochem. Photobiol., 28, p. 325
  • Pravinata, L., You, Y., Ludescher, R., Erythrosine B phosphorescence monitors molecular mobility and dynamic site heterogeneity in amorphous sucrose (2005) Biophys. J., 88, p. 3551
  • Lam, S., Lo, D., Time-resolved spectroscopic study of phosphorescence and delayed fluorescence of dyes in silca-gel glasses (1997) Chem. Phys. Lett., 281, p. 35
  • Lettinga, M.P., Zuilhof, H., Van Zandvoort, M.A.M., Phosphorescence and fluorescence characterization of fluorescein derivatives immobilized in various polymer matrices (2000) Phys. Chem. Chem. Phys., 2, p. 3697
  • Bailey, R.T., Cruickshank, F.R., Deans, G., Gillanders, R.N., Tedford, M.C., Characterization of a fluorescent sol-gel encapsulated erythrosine B dissolved oxygen sensor (2003) Anal. Chim. Acta, 487, p. 101
  • Abbruzzetti, S., Viappiani, C., Murgida, D.H., Erra-Balsells, R., Bilmes, G.M., Non-toxic, water-soluble photocalorimetric reference compounds for UVand visible excitation (1999) Chem. Phys. Lett., 304, p. 167
  • Fleming, G.R., Knight, A.W.E., Morris, J.M., Morrison, R.J.S., Robinson, G.W., Picosecond fluorescence studies of xanthene dyes (1977) J. Am. Chem. Soc., 99, p. 4306
  • Martin, M.M., Hydrogen bond effects on radiationless electronic transitions in xanthene dyes (1975) Chem. Phys. Lett., 35, p. 105
  • Reindl, S., Penzkofer, A., Triplet quantum yield determination by picosecond laser double-pulse fluorescence excitation (1996) Chem. Phys., 213, p. 429
  • Ferreira, J.A.B., Costa, S.M.B., Vieira Ferreira, L.F., Activated radiationless decay of rhodamine 3B: Polarity and friction effects (2000) J. Phys. Chem. A, 104, p. 11909
  • Kasha, M., Rawls, H.R., El-Bayoumi, M.A., The exciton model in molecular spectroscopy (1965) Pure Appl. Chem., 11, p. 371
  • McRae, E.G., Kasha, M., Enhancement of phosphorescence ability upon aggregation of dye molecules (1958) J. Chem. Phys., 28, p. 721

Citas:

---------- APA ----------
Tomasini, E.P., Braslavsky, S.E. & San Román, E. (2012) . Triplet quantum yields in light-scattering powder samples measured by laser-induced optoacoustic spectroscopy (LIOAS). Photochemical and Photobiological Sciences, 11(6), 1010-1017.
http://dx.doi.org/10.1039/c2pp05362d
---------- CHICAGO ----------
Tomasini, E.P., Braslavsky, S.E., San Román, E. "Triplet quantum yields in light-scattering powder samples measured by laser-induced optoacoustic spectroscopy (LIOAS)" . Photochemical and Photobiological Sciences 11, no. 6 (2012) : 1010-1017.
http://dx.doi.org/10.1039/c2pp05362d
---------- MLA ----------
Tomasini, E.P., Braslavsky, S.E., San Román, E. "Triplet quantum yields in light-scattering powder samples measured by laser-induced optoacoustic spectroscopy (LIOAS)" . Photochemical and Photobiological Sciences, vol. 11, no. 6, 2012, pp. 1010-1017.
http://dx.doi.org/10.1039/c2pp05362d
---------- VANCOUVER ----------
Tomasini, E.P., Braslavsky, S.E., San Román, E. Triplet quantum yields in light-scattering powder samples measured by laser-induced optoacoustic spectroscopy (LIOAS). Photochem. Photobiol. Sci. 2012;11(6):1010-1017.
http://dx.doi.org/10.1039/c2pp05362d