Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

TiO2 photocatalytic and near-neutral photo-Fenton processes were tested under simulated solar light to degrade two models of natural organic matter - resorcinol (R) (which should interact strongly with TiO2 surfaces) and hydroquinone (H) - separately or in the presence of bacteria. Under similar oxidative conditions, inactivation of Escherichia coli, Shigella sonnei and Salmonella typhimurium was carried out in the absence and in the presence of 10 mg L-1 of R and H. The 100% abatement of R and H by using a TiO2 photocatalytic process in the absence of bacteria was observed in 90 min for R and in 120 min for H, while in the presence of microorganisms abatement was only of 55% and 35% for R and H, respectively. Photo-Fenton reagent at pH 5.0 completely removed R and H in 40 min, whereas in the presence of microorganisms their degradation was of 60% to 80%. On the other hand, 2 h of TiO2 photocatalytic process inactivated S. typhimurium and E. coli cells in three and six orders of magnitude, respectively, while S. sonnei was completely inactivated in 10 min. In the presence of R or H, the bacterial inactivation via TiO2 photocatalysis was significantly decreased. With photo-Fenton reagent at pH 5 all the microorganisms tested were completely inactivated in 40 min of simulated solar light irradiation in the absence of organics. When R and H were present, bacterial photo-Fenton inactivation was less affected. The obtained results suggest that in both TiO2 and iron photo-assisted processes, there is competition between organic substances and bacteria simultaneously present for generated reactive oxygen species (ROS). This competition is most important in heterogeneous systems, mainly when there are strong organic-TiO2 surface interactions, as in the resorcinol case, suggesting that bacteria-TiO 2 interactions could play a key role in photocatalytic cell inactivation processes. © The Royal Society of Chemistry and Owner Societies 2012.

Registro:

Documento: Artículo
Título:The detrimental influence of bacteria (E. coli, Shigella and Salmonella) on the degradation of organic compounds (and vice versa) in TiO2 photocatalysis and near-neutral photo-Fenton processes under simulated solar light
Autor:Moncayo-Lasso, A.; Mora-Arismendi, L.E.; Rengifo-Herrera, J.A.; Sanabria, J.; Benítez, N.; Pulgarin, C.
Filiación:Universidad Del Valle, Grupo de Investigación en Procesos Avanzados de Oxidación (GAOX), A. A. 25360, Cali, Colombia
Centro de Investigación y Desarrollo en Ciencias Aplicadas Dr. J.J. Ronco (CINDECA), Departamento de Química, CONICET, Calle 47 No. 257, 1900 La Plata, Buenos Aires, Argentina
Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Science and Engineering, GGEC Station 6, CH-1015 Lausanne, Switzerland
Facultad de Ciencias Naturales y Exactas, Departamento de Química, Portugal
Escuela de Ingeniería de Recursos Naturales y Del Ambiente (EIDENAR), Colombia
Idioma: Inglés
Palabras clave:Bacteria (microorganisms); Escherichia coli; Salmonella; Salmonella typhimurium; Shigella; Shigella sonnei
Año:2012
Volumen:11
Número:5
Página de inicio:821
Página de fin:827
DOI: http://dx.doi.org/10.1039/c2pp05290c
Título revista:Photochemical and Photobiological Sciences
Título revista abreviado:Photochem. Photobiol. Sci.
ISSN:1474905X
CODEN:PPSHC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1474905X_v11_n5_p821_MoncayoLasso

Referencias:

  • Richardson, S.D., Ternes, T.A., Water analysis: Emerging contaminants and current issues (2005) Anal. Chem., 77, pp. 3807-3838
  • Bond, T., Goslan, E.H., Parsons, S.A., Jefferson, B., Treatment of disinfection by-products precursors (2011) Environ. Technol., 32, pp. 1-25
  • Lemarchand, K., Lebaron, P., Occurrence of Salmonella spp. and Cryptosporidium spp. in a French coastal watershed: Relationship with fecal indicators (2003) FEMS Microbiology Letters, 218 (1), pp. 203-209. , DOI 10.1016/S0378-1097(02)01135-7, PII S0378109702011357
  • Woolhouse, M.E.J., Haydon, D.T., Antia, R., Emerging pathogens: The epidemiology and evolution of species jumps (2005) Trends in Ecology and Evolution, 20 (5), pp. 238-244. , DOI 10.1016/j.tree.2005.02.009, Invasions
  • (2006) Guidelines for Drinking-water Quality, pp. 221-294. , WHO, Microbial fact sheets, WHO, Geneva
  • Moncayo-Lasso, A., Pulgarin, C., Benitez, N., Degradation of DBPs' precursors in river water before and after slow sand filtration by photo-Fenton process at pH 5 in a solar CPC reactor (2008) Water Res., 42, pp. 4125-4132
  • Markowska-Szczupak, A., Ulfig, K., Morawski, A.W., The application of titanium dioxide for deactivation of bioparticulates: An overview (2011) Catal. Today, 169, pp. 249-257
  • Ibanez, J.A., Litter, M.I., Pizarro, R.A., Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae. Comparative study with other Gram (-) bacteria (2003) Journal of Photochemistry and Photobiology A: Chemistry, 157 (1), pp. 81-85. , DOI 10.1016/S1010-6030(03)00074-1, PII S1010603003000741
  • Cho, M., Chung, H., Choi, W., Yoon, J., Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection (2004) Water Research, 38 (4), pp. 1069-1077. , DOI 10.1016/j.watres.2003.10.029
  • Coleman, H.M., Marquis, C.P., Scott, J.A., Chin, S.-S., Amal, R., Bactericidal effects of titanium dioxide-based photocatalysts (2005) Chemical Engineering Journal, 113 (1), pp. 55-63. , DOI 10.1016/j.cej.2005.07.015, PII S1385894705002494
  • Cho, M., Lee, Y., Chung, H., Yoon, J., Inactivation of Escherichia coli by Photochemical Reaction of Ferrioxalate at Slightly Acidic and Near-Neutral pHs (2004) Applied and Environmental Microbiology, 70 (2), pp. 1129-1134. , DOI 10.1128/AEM.70.2.1129-1134.2004
  • Benabbou, A.K., Derriche, Z., Felix, C., Lejeune, P., Guillard, C., Photocatalytic inactivation of Escherischia coli. Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation (2007) Applied Catalysis B: Environmental, 76 (3-4), pp. 257-263. , DOI 10.1016/j.apcatb.2007.05.026, PII S092633730700166X
  • Rincon, A.-G., Pulgarin, C., Comparative evaluation of Fe3+ and TiO2 photoassisted processes in solar photocatalytic disinfection of water (2006) Applied Catalysis B: Environmental, 63 (3-4), pp. 222-231. , DOI 10.1016/j.apcatb.2005.10.009, PII S0926337305003772
  • Byrne, J.A., Fernández-Ibañez, P.A., Dunlop, P.S.M., Alrousan, D.M.A., Hamilton, J.W.J., Photocatalytic enhancement for solar disinfection of water: A review (2011) Int. J. Photoenergy, p. 798051. , 10.1155/2011/798051
  • Sciacca, F., Rengifo-Herrera, J.A., Wéthé, J., Pulgarin, C., Dramatic enhancement of solar disinfection (SODIS) of wild Salmonella sp. in PET bottles by H2O2 addition on natural water of Burkina Faso containing dissolved iron (2010) Chemosphere, 78, pp. 1186-1191
  • Spuhler, D., Rengifo-Herrera, J.A., Pulgarin, C., The effect of Fe2+, Fe3+, H2O 2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K-12 (2010) Appl. Catal., B, 96, pp. 126-141
  • Rincon, A.-G., Pulgarin, C., Fe3+ and TiO2 solar-light-assisted inactivation of E. coli at field scale. Implications in solar disinfection at low temperature of large quantities of water (2007) Catalysis Today, 122 (1-2), pp. 128-136. , DOI 10.1016/j.cattod.2007.01.028, PII S0920586107000521
  • Linsebigler, A.L., Lu, G., Yates, J.T., Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results (1995) Chem. Rev., 95, pp. 735-758
  • Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., Environmental applications of semiconductor photocatalysis (1995) Chem. Rev., 95, pp. 69-69
  • Mills, A., Davies, R., Worsley, D., Water purification by semiconductor photocatalysis (1993) Chem. Soc. Rev., 22, pp. 417-426
  • Fujishima, A., Zhang, X., Tryk, D.T., TiO2 photocatalysis and related surface phenomena (2008) Surf. Sci. Rep., 63, pp. 515-582
  • Bandara, J., Pulgarin, C., Peringer, P., Kiwi, J., Chemical (photo-activated) coupled biological homogeneous degradation of p-nitro-o-toluene-sulfonic acid in a flow reactor (1997) Journal of Photochemistry and Photobiology A: Chemistry, 111 (1-3), pp. 253-263. , PII S1010603097002499
  • Pulgarin, C., Kiwi, J., Overview of photocatalytic and electrocatalytic pretreatment of industrial non-biodegradable pollutants and pesticides (1996) Chimia, 50, pp. 50-56
  • Sun, Y., Pignatello, J.J., Photochemical reactions involved in the total mineralization of 2,4-D by Fe3+/H2O2/UV (1993) Environmental Science and Technology, 27 (2), pp. 304-310
  • Fallmann, H., Krutzler, T., Bauer, R., Malato, S., Blanco, J., Applicability of the Photo-Fenton method for treating water containing pesticides (1999) Catalysis Today, 54 (2-3), pp. 309-319. , PII S0920586199001923, Solar Catalysis for Water Decontamination
  • Pignatello, J.J., Oliveros, E., MacKay, A., Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry (2006) Critical Reviews in Environmental Science and Technology, 36 (1), pp. 1-84. , DOI 10.1080/10643380500326564
  • Herrera, F., Pulgarin, C., Nadtochenko, V., Kiwi, J., Accelerated photo-oxidation of concentrated p-coumaric acid in homogeneous solution. Mechanistic studies, intermediates and precursors formed in the dark (1998) Applied Catalysis B: Environmental, 17 (1-2), pp. 141-156. , DOI 10.1016/S0926-3373(98)00008-3, PII S0926337398000083
  • Bond, T., Goslan, E.H., Parsons, S.A., Jefferson, B., Treatment of disinfection by-product precursors (2011) Environ. Technol., 32, pp. 1-25
  • Rincon, A.-G., Pulgarin, C., Effect of pH, inorganic ions, organic matter and H2O 2 on E. coli K12 photocatalytic inactivation by TiO2: Implications in solar water disinfection (2004) Applied Catalysis B: Environmental, 51 (4), pp. 283-302. , DOI 10.1016/j.apcatb.2004.03.007, PII S0926337304001663
  • Gulley-Stahl, H., Hogan, I.I.P.A., Schmidt, W.L., Wall, S.J., Buhrlage, A., Bullen, H.A., Surface complexation of catechol to metal oxides: An ATR-FTIR adsorption and dissolution study (2010) Environ. Sci. Technol., 44, pp. 4116-4121
  • Arana, J., Rodriguez, J.M.D., Diaz, O.G., Melian, J.A.H., Rodriguez, C.F., Pena, J.P., The effect of acetic acid on the photocatalytic degradation of catechol and resorcinol (2006) Applied Catalysis A: General, 299 (1-2), pp. 274-284. , DOI 10.1016/j.apcata.2005.10.056, PII S0926860X05008124
  • Xu, W., Raftery, D., Photocatalytic oxidation of 2-propanol on TiO2 powder and TiO2 monolayer catalysts studied by solid-state NMR (2001) J. Phys. Chem. B, 105, pp. 4343-4349
  • Enriquez, R., Pichat, P., Different net effect of TiO2 sintering temperature on the photocatalytic removal rates of 4-chlorophenol, 4-chlorobenzoic acid and dichloroacetic acid in water (2006) Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 41 (6), pp. 955-966. , DOI 10.1080/10934520600689233, PII H213X3734507232
  • Rincon, A.G., Pulgarin, C., Adler, N., Peringer, P., Interaction between E. coli inactivation and DBP-precursors - dihydroxybenzene isomers - in the photocatalytic process of drinking-water disinfection with TiO2 (2001) Journal of Photochemistry and Photobiology A: Chemistry, 139 (2-3), pp. 233-241. , PII S1010603001003744
  • Alrousan, D.M.A., Dunlop, P.S.M., McMurray, T.A., Byrne, J.A., Photocatalytic inactivation of E. coli in surface water using immobilized nanoparticle TiO2 films (2009) Water Res., 43, pp. 47-54
  • Berney, M., Weilenmann, H.-U., Simonetti, A., Egli, T., Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella Typhimurium and Vibrio cholerae (2006) Journal of Applied Microbiology, 101 (4), pp. 828-836. , DOI 10.1111/j.1365-2672.2006.02983.x
  • Gumy, D., Morais, C., Bowen, P., Pulgarin, C., Giraldo, S., Hajdu, R., Kiwi, J., Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: Influence of the isoelectric point (2006) Applied Catalysis B: Environmental, 63 (1-2), pp. 76-84. , DOI 10.1016/j.apcatb.2005.09.013, PII S0926337305003346
  • Fang, L., Cai, P., Chen, W., Liang, W., Hong, Z., Huang, Q., Impact of cell wall structure on the behaviour of bacterial cells in the binding of cooper and cadmium (2009) Colloids Surf., A, 347, pp. 50-55
  • Gogniat, G., Thyssen, M., Denis, M., Pulgarin, C., Dukan, S., The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity (2006) FEMS Microbiol. Lett., 258, pp. 18-24
  • Guillard, C., Bui, T.-H., Felix, C., Moules, V., Lina, B., Lejeune, P., Microbiological disinfection of water and air by photocatalysis (2008) C. R. Chim., 11, pp. 107-113
  • Sylva, R.N., The hydrolysis of iron(iii) (1972) Rev. Pure Appl. Chem., 22, pp. 115-130
  • Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., Gernjak, W., Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends (2009) Catal. Today, 147, pp. 1-59
  • Gallard, H., De Laat, J., Legube, B., Spectrophotometric study of the formation of iron(III)-hydroperoxy complexes in homogeneous aqueous solutions (1999) Water Research, 33 (13), pp. 2929-2936. , DOI 10.1016/S0043-1354(99)00007-X, PII S004313549900007X
  • Lee, C., Yoon, J., Determination of quantum yields for the photolysis of Fe(III)-hydroxo complexes in aqueous solution using a novel kinetic method (2004) Chemosphere, 57 (10), pp. 1449-1458. , DOI 10.1016/j.chemosphere.2004.07.052, PII S0045653504006678

Citas:

---------- APA ----------
Moncayo-Lasso, A., Mora-Arismendi, L.E., Rengifo-Herrera, J.A., Sanabria, J., Benítez, N. & Pulgarin, C. (2012) . The detrimental influence of bacteria (E. coli, Shigella and Salmonella) on the degradation of organic compounds (and vice versa) in TiO2 photocatalysis and near-neutral photo-Fenton processes under simulated solar light. Photochemical and Photobiological Sciences, 11(5), 821-827.
http://dx.doi.org/10.1039/c2pp05290c
---------- CHICAGO ----------
Moncayo-Lasso, A., Mora-Arismendi, L.E., Rengifo-Herrera, J.A., Sanabria, J., Benítez, N., Pulgarin, C. "The detrimental influence of bacteria (E. coli, Shigella and Salmonella) on the degradation of organic compounds (and vice versa) in TiO2 photocatalysis and near-neutral photo-Fenton processes under simulated solar light" . Photochemical and Photobiological Sciences 11, no. 5 (2012) : 821-827.
http://dx.doi.org/10.1039/c2pp05290c
---------- MLA ----------
Moncayo-Lasso, A., Mora-Arismendi, L.E., Rengifo-Herrera, J.A., Sanabria, J., Benítez, N., Pulgarin, C. "The detrimental influence of bacteria (E. coli, Shigella and Salmonella) on the degradation of organic compounds (and vice versa) in TiO2 photocatalysis and near-neutral photo-Fenton processes under simulated solar light" . Photochemical and Photobiological Sciences, vol. 11, no. 5, 2012, pp. 821-827.
http://dx.doi.org/10.1039/c2pp05290c
---------- VANCOUVER ----------
Moncayo-Lasso, A., Mora-Arismendi, L.E., Rengifo-Herrera, J.A., Sanabria, J., Benítez, N., Pulgarin, C. The detrimental influence of bacteria (E. coli, Shigella and Salmonella) on the degradation of organic compounds (and vice versa) in TiO2 photocatalysis and near-neutral photo-Fenton processes under simulated solar light. Photochem. Photobiol. Sci. 2012;11(5):821-827.
http://dx.doi.org/10.1039/c2pp05290c