Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Kiwi fruit displays chlorophyll fluorescence. A physical model was developed to reproduce the observed original fluorescence for the whole fruit, from the emission of the different parts of the kiwi fruit. The spectral distribution of fluorescence in each part of the fruit, was corrected to eliminate distortions due to light re-absorption and it was analyzed in relation to photosystem II-photosystem I ratio. Kiwi fruit also displays variable chlorophyll-fluorescence, similar to that observed from leaves. The maximum quantum efficiency of photosystem II photochemistry (F v/F m), the quantum efficiency of photosystem II (φ PSII), and the photochemical and non-photochemical quenching coefficients (q P and q NP respectively) were determined and discussed in terms of the model developed. The study was extended by determining the photosynthetic parameters as a function of the storage time, at both 4°C and room temperature for 25 days. © 2012 The Royal Society of Chemistry and Owner Societies.

Registro:

Documento: Artículo
Título:Modelling chlorophyll fluorescence of kiwi fruit (Actinidia deliciosa)
Autor:Novo, J.M.; Iriel, A.; Lagorio, M.G.
Filiación:Dpto. de Química Inorgánica, Analítica y Química Física, Ciudad Universitaria Pabellón II, 1er piso C1428EHA, Buenos Aires, Argentina
Palabras clave:chlorophyll; Actinidia; article; chemical model; chemistry; fruit; metabolism; photosystem I; photosystem II; ultraviolet spectrophotometry; Actinidia; Chlorophyll; Fruit; Models, Chemical; Photosystem I Protein Complex; Photosystem II Protein Complex; Spectrophotometry, Ultraviolet; Actinidia deliciosa
Año:2012
Volumen:11
Número:4
Página de inicio:724
Página de fin:730
DOI: http://dx.doi.org/10.1039/c2pp05299g
Título revista:Photochemical and Photobiological Sciences
Título revista abreviado:Photochem. Photobiol. Sci.
ISSN:1474905X
CODEN:PPSHC
CAS:chlorophyll, 1406-65-1, 15611-43-5; Chlorophyll, 1406-65-1; Photosystem I Protein Complex; Photosystem II Protein Complex
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1474905X_v11_n4_p724_Novo

Referencias:

  • Maxwell, K., Johnson, G.N., Chlorophyll fluorescence - A practical guide (2000) Journal of Experimental Botany, 51 (345), pp. 659-668
  • Lichtenthaler, H.K., Buschmann, C., Knapp, M., How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio R Fd of leaves with the PAM fluorometer (2005) Photosynthetica, 43 (3), pp. 379-393. , DOI 10.1007/s11099-005-0062-6
  • Baker, N.R., Oxborough, K., (2004) Chlorophyll A Fluorescence: A Signature of Photosynthesis, 1, pp. 68-74. , ed. G. C. Papageorgiou and Govindjee, Springer, Dordrecht, 1st edn, ch. 3
  • Ramos, M.E., Lagorio, M.G., A model considering light reabsorption processes to correct in vivo chlorophyll fluorescence spectra in apples (2006) Photochemical and Photobiological Sciences, 5 (5), pp. 508-512. , DOI 10.1039/b514248b
  • Mazzinghi, P., Agati, G., Fusi, F., Interpretation and physiological significance of blue-green and red vegetation fluorescence (1994) Int. Geosci. Remote Sens. Symp. (IGARSS), 1, pp. 640-642
  • Pfundel, E., Estimating the contribution of Photosystem I to total leaf chlorophyll fluorescence (1998) Photosynthesis Research, 56 (2), pp. 185-195. , DOI 10.1023/A:1006032804606
  • Palombi, L., Cecchi, G., Lognoli, D., Raimondi, V., Toci, G., Agati, G., A retrieval algorithm to evaluate the Photosystem i and Photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures (2011) Photosynth. Res., 108, pp. 225-239
  • Cordon, G.B., Lagorio, M.G., Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models (2006) Photochemical and Photobiological Sciences, 5 (8), pp. 735-740. , DOI 10.1039/b517610g
  • Lagorio, M.G., Dicelio, L.E., Litter, M.I., San Roman, E., Modeling of fluorescence quantum yields of supported dyes: Aluminium carboxyphthalocyanine on cellulose (1998) Journal of the Chemical Society - Faraday Transactions, 94 (3), pp. 419-425
  • Prange, R.K., DeLong, J.M., Leyte, J.C., Harrison, P.A., Oxygen concentration affects chlorophyll fluorescence in chlorophyll-containing fruit (2002) Postharvest Biology and Technology, 24 (2), pp. 201-205. , DOI 10.1016/S0925-5214(01)00188-0, PII S0925521401001880
  • Deell, J.R., Van Kooten, O., Prange, R.K., Murr, D.P., Applications of chlorophyll fluorescence techniques in postharvest physiology (1999) Hortic. Rev., 23, pp. 69-107
  • Gross, J., Ohad, I., In vivo fluorescence spectroscopy of chlorophyll in various unripe and ripe fruit (1983) Photochem. Photobiol., 37, pp. 195-200
  • Given, N.K., (1993) Biochemistry of Fruit Ripening, pp. 235-254. , ed. G. B. Seymour, J. E. Taylor and G. A. Tucker, Chapman and Hall, London, 1st edn
  • Possingham, J.V., Coote, M., Hawker, J.S., The plastids and pigments of fresh and dried Chinese Gooseberries (Actinidia chinensis) (1980) Ann. Bot., 45, pp. 529-533
  • Montefiori, M., McGhie, T.K., Hallett, I.C., Costa, G., Changes in pigments and plastid ultrastructure during ripening of green-fleshed and yellow-fleshed kiwifruit (2009) Sci. Hortic., 119, pp. 377-387
  • Deell, J.R., Toivonen, P.M.A., (2003) Practical Applications of Chlorophyll Fluorescence in Plant Biology, 1, pp. 203-243. , ed. J. R. DeEll and M. A. Toivonen, Kluwer Academic Publishers, Massachusetts, ch. 7
  • Lechaudel, M., Urban, L., Joas, J., Chlorophyll fluorescence, a nondestructive method to assess maturity of mango fruits (Cv. 'Cogshall') without growth conditions bias (2010) J. Agric. Food Chem., 58, pp. 7532-7538
  • Cerovic, Z.G., Moise, N., Agati, G., Latouche, G., Ben Ghozlen, N., Meyer, S., New portable optical sensors for the assessment of winegrape phenolic maturity based on berry fluorescence (2008) J. Food Compos. Anal., 21, pp. 650-654
  • Wendlandt, W., Hecht, H.G., (1966) Reflectance Spectroscopy, p. 62. , ed. J. Elving and I. M. Kolthoff, Interscience Publishers, New York
  • Ramos, M.E., Lagorio, M.G., True fluorescence spectra of leaves (2004) Photochemical and Photobiological Sciences, 3 (11-12), pp. 1063-1066. , DOI 10.1039/b406525e
  • Cordon, G.B., Lagorio, M.G., Optical properties of the adaxial and abaxial faces of leaves. Chlorophyll fluorescence, absorption and scattering coefficients (2007) Photochemical and Photobiological Sciences, 6 (8), pp. 873-882. , DOI 10.1039/b617685b
  • Rodriguez, H.B., Lagorio, M.G., San Roman, E., Rose Bengal adsorbed on microgranular cellulose: Evidence on fluorescent dimers (2004) Photochemical and Photobiological Sciences, 3 (7), pp. 674-680. , DOI 10.1039/b402484b
  • Zeug, A., Zimmermann, J., Roder, B., Lagorio, M.G., San Roman, E., Microcrystalline cellulose as a carrier for hydrophobic photosensitizers in water (2002) Photochemical and Photobiological Sciences, 1 (3), pp. 198-203. , DOI 10.1039/b109592g
  • Iriel, A., Lagorio, M.G., Dicelio, L.E., San Román, E., Photophysics of supported dyes: Phthalocyanine on silanized silica (2002) Phys. Chem. Chem. Phys., 4, pp. 224-231
  • Lagorio, M.G., San Roman, E., Zeug, A., Zimmermann, J., Roder, B., Photophysics on surfaces: Absorption and luminescence properties of pheophorbide-a on cellulose (2001) Physical Chemistry Chemical Physics, 3 (8), pp. 1524-1529. , DOI 10.1039/b100077m
  • Genty, B., Briantais, J.-M., Baker, N.R., The relationship between the quantum yield of the photosynthetic electron transport and quenching of chlorophyll fluorescence (1989) Biochim. Biophys. Acta, Gen. Subj., 990, pp. 87-92
  • Van Kooten, O., Snel, J.F.H., The use of chlorophyll fluorescence nomenclature in plant stress physiology (1990) Photosynth. Res., 25, pp. 147-150
  • Kim, J.H., Glick, R.E., Melis, A., Dynamics of photosystem stoichiometry adjustment by light quality in chloroplasts (1993) Plant Physiol., 102, pp. 181-190
  • Walters, R.G., Towards an understanding of photosynthetic acclimation (2005) Journal of Experimental Botany, 56 (411), pp. 435-447. , DOI 10.1093/jxb/eri060, Light Stress in Plants: Mechanisms and Interactions
  • Fan, D.-Y., Hope, A.B., Smith, P.J., Jia, H., Pace, R.J., Anderson, J.M., Chow, W.S., The stoichiometry of the two photosystems in higher plants revisited (2007) Biochimica et Biophysica Acta - Bioenergetics, 1767 (8), pp. 1064-1072. , DOI 10.1016/j.bbabio.2007.06.001, PII S0005272807001326

Citas:

---------- APA ----------
Novo, J.M., Iriel, A. & Lagorio, M.G. (2012) . Modelling chlorophyll fluorescence of kiwi fruit (Actinidia deliciosa). Photochemical and Photobiological Sciences, 11(4), 724-730.
http://dx.doi.org/10.1039/c2pp05299g
---------- CHICAGO ----------
Novo, J.M., Iriel, A., Lagorio, M.G. "Modelling chlorophyll fluorescence of kiwi fruit (Actinidia deliciosa)" . Photochemical and Photobiological Sciences 11, no. 4 (2012) : 724-730.
http://dx.doi.org/10.1039/c2pp05299g
---------- MLA ----------
Novo, J.M., Iriel, A., Lagorio, M.G. "Modelling chlorophyll fluorescence of kiwi fruit (Actinidia deliciosa)" . Photochemical and Photobiological Sciences, vol. 11, no. 4, 2012, pp. 724-730.
http://dx.doi.org/10.1039/c2pp05299g
---------- VANCOUVER ----------
Novo, J.M., Iriel, A., Lagorio, M.G. Modelling chlorophyll fluorescence of kiwi fruit (Actinidia deliciosa). Photochem. Photobiol. Sci. 2012;11(4):724-730.
http://dx.doi.org/10.1039/c2pp05299g