Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cooperation among transcription factors is central for their ability to execute specific transcriptional programmes. The AP1 complex exemplifies a network of transcription factors that function in unison under normal circumstances and during the course of tumour development and progression. This Perspective summarizes our current understanding of the changes in members of the AP1 complex and the role of ATF2 as part of this complex in tumorigenesis.

Registro:

Documento: Artículo
Título:Emerging roles of ATF2 and the dynamic AP1 network in cancer
Autor:Lopez-Bergami, P.; Lau, E.; Ronai, Z.
Filiación:Signal Transduction Program, Burnham Institute for Medical Research, San Diego, CA 92037, United States
Instituto de Biologia y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
Palabras clave:activating transcription factor 2; activating transcription factor 3; activating transcription factor 4; cathepsin L; cyclic AMP responsive element binding protein; cyclin A; ezrin; gelatinase A; gelatinase B; high mobility group B1 protein; interstitial collagenase; mitogen activated protein kinase kinase 4; protein fos; stathmin; stromelysin; transcription factor AP 1; transcription factor FosB; transcription factor Fra 1; transcription factor JunB; transcription factor JunD; vasculotropin A; angiogenesis; apoptosis; cancer invasion; carcinogenesis; cell cycle regulation; cell differentiation; cell survival; human; in vitro study; in vivo study; metastasis; nonhuman; priority journal; protein degradation; protein expression; protein phosphorylation; protein structure; review; signal transduction; stem cell; Activating Transcription Factor 2; Animals; Gene Regulatory Networks; Humans; Multigene Family; Neoplasms; Protein Binding; Proto-Oncogene Proteins c-jun; Transcription Factor AP-1
Año:2010
Volumen:10
Número:1
Página de inicio:65
Página de fin:76
DOI: http://dx.doi.org/10.1038/nrc2681
Título revista:Nature Reviews Cancer
Título revista abreviado:Nat. Rev. Cancer
ISSN:1474175X
CODEN:NRCAC
CAS:cathepsin L, 60616-82-2; cyclic AMP responsive element binding protein, 130428-87-4, 130939-96-7; gelatinase A, 146480-35-5; gelatinase B, 146480-36-6; interstitial collagenase, 9001-12-1; stathmin, 126880-56-6; stromelysin, 79955-99-0; transcription factor Fra 1, 183971-46-2; vasculotropin A, 489395-96-2; Activating Transcription Factor 2; Proto-Oncogene Proteins c-jun; Transcription Factor AP-1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1474175X_v10_n1_p65_LopezBergami

Referencias:

  • Lee, W., Mitchell, P., Tjian, R., Purified transcription factor AP1 interacts with TPA-inducible enhancer elements (1987) Cell, 49, pp. 741-752
  • Angel, P., Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor (1987) Cell, 49, pp. 729-739
  • Wisdom, R., AP1: One switch for many signals (1999) Exp. Cell Res., 253, pp. 180-185
  • Eferl, R., Wagner, E.F., AP1: A double-edged sword in tumorigenesis (2003) Nature Rev. Cancer, 3, pp. 859-868
  • Angel, P., Karin, M., The role of Jun, Fos and the AP1 complex in cell-proliferation and transformation (1991) Biochem. Biophys. Acta, 1072, pp. 129-157
  • Vlahopoulos, S.A., The role of ATF-2 in oncogenesis (2008) Bioessays, 30, pp. 314-327
  • Maki, Y., Bos, C., Davis, C., Starbuck, M., Vogt, P., Avian sarcoma virus 17 carries the jun oncogene (1987) Proc. Natl Acad. Sci. USA, 84, pp. 2848-2852
  • Vogt, P.K., Jun the oncoprotein (2001) Oncogene, 20, pp. 2365-2377
  • Eferl, R., Functions of c-Jun in liver and heart development (1999) J. Cell Biol., 145, pp. 1049-1061
  • Mechta-Grigoriou, F., Gerald, D., Yaniv, M., The mammalian Jun proteins: Redundancy and specificity (2001) Oncogene, 20, pp. 2378-2389
  • Bakiri, L., Lallemand, D., Bossy-Wetzel, E., Yaniv, M., Cell cycle-dependent variations in c-Jun and JunB phosphorylation: A role in the control of cyclin D1 expression (2000) EMBO J., 19, pp. 2056-2068
  • Mariani, O., JUN Oncogene amplification and overexpression block adipocytic differentiation in highly aggressive sarcomas (2007) Cancer Cell, 11, pp. 361-374
  • Shaulian, E., Karin, M., AP1 in cell proliferation and survival (2001) Oncogene, 20, pp. 2390-2400
  • Angel, P., Hattori, K., Smeal, T., Karin, M., The jun proto-oncogene is positively autoregulated by its product, Jun/AP1 (1988) Cell, 55, pp. 875-885
  • Van Dam, H., Castellazzi, M., Distinct roles of Jun:Fos and Jun:ATF dimers in oncogenesis (2001) Oncogene, 20, pp. 2453-2464
  • Sng, J.C.G., Taniura, H., Yoneda, Y., A tale of early response genes (2004) Biol. Pharm. Bull., 27, pp. 606-612
  • Whitmarsh, A.J., Davis, R.J., Regulation of transcription factor function by phosphorylation (2000) Cell. Mol. Life Sci., 57, pp. 1172-1183
  • Katabami, M., Cyclin A is a c-Jun target gene and is necessary for c-Jun-induced anchorage-independent growth in RAT1a cells (2005) J. Biol. Chem., 280, pp. 16728-16738
  • Weitzman, J.B., Fiette, L., Matsuo, K., Yaniv, M., JunD protects cells from p53-dependent senescence and apoptosis (2000) Mol. Cell, 6, pp. 1109-1119
  • Schreiber, M., Control of cell cycle progression by c-Jun is p53 dependent (1999) Genes Dev., 13, pp. 607-619
  • Ameyar-Zazoua, M., AP1 dimers regulate transcription of the p14/p19ARF tumor suppressor gene (2005) Oncogene, 24, pp. 2298-2306
  • Deng, T., Karin, M., JunB differs from c-Jun in its DNA-binding and dimerization domains, and represses c-Jun by formation of inactive heterodimers (1993) Genes Dev., 7, pp. 479-490
  • Aggarwal, B.B., Gehlot, P., Inflammation and cancer: How friendly is the relationship for cancer patients? Curr (2009) Opin. Pharmacol., 9, pp. 351-369
  • Passegue, E., Wagner, E.F., JunB suppresses cell proliferation by transcriptional activation of p16INK4a expression (2000) EMBO J., 19, pp. 2969-2979
  • Ryseck, R.P., Hirai, S.I., Yaniv, M., Bravo, R., Transcriptional activation of c-jun during the G0/G1 transition in mouse fibroblasts (1988) Nature, 334, pp. 535-537
  • Mayo, M.W., Steelman, L.S., McCubrey, J.A., Phorbol esters support the proliferation of a hematopoietic cell line by upregulating c-jun expression (1994) Oncogene, 9, pp. 1999-2008
  • Zhang, Y., Critical role of c-Jun overexpression in liver metastasis of human breast cancer xenograft model (2007) BMC Cancer, 7, p. 145
  • Jin, X., Blockade of AP1 activity by dominant-negative TAM67 can abrogate the oncogenic phenotype in latent membrane protein 1-positive human nasopharyngeal carcinoma (2007) Mol. Carcinog., 46, pp. 901-911
  • Shimizu, Y., Growth inhibition of non-small cell lung cancer cells by AP1 blockade using a cJun dominant-negative mutant (2008) Br. J. Cancer, 98, pp. 915-922
  • Shen, Q., The AP1 transcription factor regulates breast cancer cell growth via cyclins and E2F factors (2008) Oncogene, 27, pp. 366-377
  • Suto, R., Dominant-negative mutant of c-Jun gene transfer: A novel therapeutic strategy for colorectal cancer (2004) Gene Therapy, 11, pp. 187-193
  • Passegue, E., Jochum, W., Behrens, A., Ricci, R., Wagner, E.F., JunB can substitute for Jun in mouse development and cell proliferation (2002) Nature Genet., 30, pp. 158-166
  • Agarwal, S.K., Transcription factor JunD, deprived of menin, switches from growth suppressor to growth promoter (2003) Proc. Natl Acad. Sci. USA, 100, pp. 10770-10775
  • Laine, A., Ronai, Z., Ubiquitin chains in the ladder of MAPK signaling (2005) Sci. STKE, 281, pp. re5
  • Dérijard, B., JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain (1994) Cell, 76, pp. 1025-1037
  • Sabapathy, K., Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation (2004) Mol. Cell, 15, pp. 713-725
  • Sabapathy, K., Wagner, E.F., JNK2: A negative regulator of cellular proliferation (2004) Cell Cycle, 3, pp. 1520-1523
  • Lively, T.N., Ferguson, H.A., Galasinski, S.K., Seto, A.G., Goodrich, J.A., C-Jun binds the N terminus of Human TAFII250 to derepress RNA polymerase II transcription in vitro (2001) J. Biol. Chem., 276, pp. 25582-25588
  • Franklin, C.C., McCulloch, A.V., Kraft, A.S., In vitro association between the Jun protein family and the general transcription factors, TBP and TFIIB (1995) Biochem. J., 305, pp. 967-974
  • Karin, M., Liu, Z.G., Zandi, E., AP1 function and regulation (1997) Curr. Opin. Cell Biol., 9, pp. 240-246
  • Weiss, C., JNK phosphorylation relieves HDAC3-dependent suppression of the transcriptional activity of c-Jun (2003) EMBO J., 22, pp. 3686-3695
  • Kallunki, T., Deng, T., Hibi, M., Karin, M., C-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions (1996) Cell, 87, pp. 929-939
  • Gallo, A., Menin uncouples Elk-1, JunD and c-Jun phosphorylation from MAP kinase activation (2002) Oncogene, 21, pp. 6434-6445
  • Lopez-Bergami, P., Rewired ERK-JNK signaling pathways in melanoma (2007) Cancer Cell, 11, pp. 447-460
  • Morton, S., Davis, R.J., McLaren, A., Cohen, P., A reinvestigation of the multisite phosphorylation of the transcription factor c-Jun (2003) EMBO J., 22, pp. 3876-3886
  • Bhoumik, A., Ronai, Z., ATF2: A transcription factor that elicits oncogenic or tumor suppressor activities (2008) Cell Cycle, 7, pp. 2341-2345
  • Wei, W., Jin, J., Schlisio, S., Harper, J.W., Kaelin, W.G., The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase (2005) Cancer Cell, 8, pp. 25-33
  • Nateri, A.S., Riera-Sans, L., Da Costa, C., Behrens, A., The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling (2004) Science, 303, pp. 1374-1378
  • Davis, R.J., Signal transduction by the JNK group of MAP kinases (2000) Cell, 103, pp. 239-252
  • Fuchs, S.Y., Dolan, L., Davis, R.J., Ronai, Z., Phosphorylation-dependent targeting of c-Jun ubiquitination by Jun N-kinase (1996) Oncogene, 13, pp. 1531-1535
  • Bossis, G., Down-regulation of c-Fos/c-Jun AP1 dimer activity by sumoylation (2005) Mol. Cell. Biol., 25, pp. 6964-6979
  • Cheng, J., Perkins, N.D., Yeh, E.T., Differential regulation of c-Jun-dependent transcription by SUMO-specific proteases (2005) J. Biol. Chem., 280, pp. 14492-14498
  • Farras, R., Bossis, G., Andermarcher, E., Jariel-Encontre, I., Piechaczyk, M., Mechanisms of delivery of ubiquitylated proteins to the proteasome: New target for anti-cancer therapy? (2005) Crit. Rev. Oncol. Hematol., 54, pp. 31-51
  • Garaude, J., SUMOylation regulates the transcriptional activity of JunB in T lymphocytes (2008) J. Immunol., 180, pp. 5983-5990
  • Musti, A.M., Treier, M., Peverali, F.A., Bohmann, D., Differential regulation of c-Jun and JunD by ubiquitin-dependent protein degradation (1996) Biol. Chem., 377, pp. 619-624
  • Tulchinsky, E., Fos family members: Regulation, structure and role in oncogenic transformation (2000) Histol. Histopathol., 15, pp. 921-928
  • Halazonetis, T.D., Georgopoulos, K., Greenberg, M.E., Leder, P., C-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities (1988) Cell, 55, pp. 917-924
  • Greenberg, M.E., Ziff, E.B., Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene (1984) Nature, 3 (11), pp. 433-438
  • Kovary, K., Bravo, R., The jun and fos protein families are both required for cell cycle progression in fibroblasts (1991) Mol. Cell. Biol., 11, pp. 4466-4472
  • Adiseshaiah, P., Peddakama, S., Zhang, Q., Kalvakolanu, D.V., Reddy, S.P., Mitogen regulated induction of FRA-1 proto-oncogene is controlled by the transcription factors binding to both serum and TPA response elements (2005) Oncogene, 24, pp. 4193-4205
  • Basbous, J., Jariel-Encontre, I., Gomard, T., Bossis, G., Piechaczyk, M., Ubiquitin-independent-versus ubiquitin-dependent proteasomal degradation of the c-Fos and Fra-1 transcription factors: Is there a unique answer? (2008) Biochimie, 90, pp. 296-305
  • Pellegrino, M.J., Stork, P.J., Sustained activation of extracellular signal-regulated kinase by nerve growth factor regulates c-fos protein stabilization and transactivation in PC12 cells (2006) J. Neurochem., 99, pp. 1480-1493
  • Tanos, T., Phosphorylation of c-Fos by members of the p38 MAPK family. Role in the AP1 response to UV light (2005) J. Biol. Chem., 280, pp. 18842-18852
  • Basbous, J., Chalbos, D., Hipskind, R., Jariel-Encontre, I., Piechaczyk, M., Ubiquitin-independent proteasomal degradation of Fra-1 is antagonized by Erk1/2 pathway-mediated phosphorylation of a unique C-terminal destabilizer (2007) Mol. Cell. Biol., 27, pp. 3936-3950
  • Malnou, C.E., Heterodimerization with Jun family members regulates c-Fos nucleocytoplasmic traffic (2007) J. Biol. Chem., 282, pp. 31046-31059
  • Hai, T., Hartman, M.G., The molecular biology and nomenclature of the activating transcription factor/ cAMP responsive element binding family of transcription factors: Activating transcription factor proteins and homeostasis (2001) Gene, 273, pp. 1-11
  • Bhoumik, A., Lopez-Bergami, P., Ronai, Z., ATF2 on the double-activating transcription factor and DNA damage response protein (2007) Pigment Cell Res., 20, pp. 498-506
  • Breitwieser, W., Feedback regulation of p38 activity via ATF2 is essential for survival of embryonic liver cells (2007) Genes Dev., 21, pp. 2069-2082
  • Takeda, J., Expression of the CRE-BP1 transcriptional regulator binding to the cyclic AMP response element in central nervous system, regenerating liver, and human tumors (1991) Oncogene, 6, pp. 1009-1014
  • Kim, H.S., Choi, E.S., Shin, J.A., Jang, Y.K., Park, S.D., Regulation of Swi6/HP1-dependent heterochromatin assembly by cooperation of components of the mitogen-activated protein kinase pathway and a histone deacetylase Clr6 (2004) J. Biol. Chem., 279, pp. 42850-42859
  • Bruhat, A., ATF2 is required for amino acid-regulated transcription by orchestrating specific histone acetylation (2007) Nucleic Acids Res., 35, pp. 1312-1321
  • Agelopoulos, M., Thanos, D., Epigenetic determination of a cell-specific gene expression program by ATF-2 and the histone variant macroH2A (2006) EMBO J., 25, pp. 4843-4853
  • Maekawa, T., Mouse ATF-2 null mutants display features of a severe type of meconium aspiration syndrome (1999) J. Biol. Chem., 274, pp. 17813-17819
  • Papassava, P., Overexpression of activating transcription factor-2 is required for tumor growth and progression in mouse skin tumors (2004) Cancer Res., 64, pp. 8573-8584
  • Zoumpourlis, V., High levels of phosphorylated c-Jun, Fra-1, Fra-2 and ATF-2 proteins correlate with malignant phenotypes in the multistage mouse skin carcinogenesis model (2000) Oncogene, 19, pp. 4011-4021
  • Woo, I.S., Kohno, T., Inoue, K., Ishii, S., Yokota, J., Infrequent mutations of the activating transcription factor-2 gene in human lung cancer, neuroblastoma and breast cancer (2002) Int. J. Oncol., 20, pp. 527-531
  • Maekawa, T., Reduced levels of ATF-2 predispose mice to mammary tumors (2007) Mol. Cell. Biol., 27, pp. 1730-1744
  • Song, H., Ki, S.H., Kim, S.G., Moon, A., Activating transcription factor 2 mediates matrix metalloproteinase-2 transcriptional activation induced by p38 in breast epithelial cells (2006) Cancer Res., 66, pp. 10487-10496
  • Reimold, A.M., Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice (1996) Nature, 379, pp. 262-265
  • Ozawa, K., Sudo, T., Soeda, E., Yoshida, M.C., Ishii, S., Assignment of the human CREB2 (CRE-BP1) gene to 2q32 (1991) Genomics, 10, pp. 1103-1104
  • Landschulz, W.H., Johnson, P.F., McKnight, S.L., The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins (1988) Science, 240, pp. 1759-1764
  • Liu, H., Mutual regulation of c-Jun and ATF2 by transcriptional activation and subcellular localization (2006) EMBO J., 25, pp. 1058-1069
  • Li, X.Y., Green, M.R., Intramolecular inhibition of activating transcription factor-2 function by its DNA-binding domain (1996) Genes Dev., 10, pp. 517-527
  • Ouwens, D.M., Growth factors can activate ATF2 via a two-step mechanism: Phosphorylation of Thr71 through the Ras-MEK-ERK pathway and of Thr69 through RalGDS-Src-p38 (2002) EMBO J., 21, pp. 3782-3793
  • Gupta, S., Campbell, D., Derijard, B., Davis, R.J., Transcription factor ATF2: Regulation by the JNK signal transduction pathway (1995) Science, 267, pp. 389-393
  • Firestein, R., Feuerstein, N., Association of activating transcription factor 2 (ATF2) with the ubiquitin-conjugating enzyme hUBC9. Implication of the ubiquitin/proteasome pathway in regulation of ATF2 in T cells (1998) J. Biol. Chem., 273, pp. 5892-5902
  • Fuchs, S.Y., Ronai, Z., Ubiquitination and degradation of ATF2 are dimerization dependent (1999) Mol. Cell. Biol., 19, pp. 3289-3298
  • Fuchs, S.Y., Tappin, I., Ronai, Z., Stability of the ATF2 transcription factor is regulated by phosphorylation and dephosphorylation (2000) J. Biol. Chem., 275, pp. 12560-12564
  • Bhoumik, A., ATM-dependent phosphorylation of ATF2 is required for the DNA damage response (2005) Mol. Cell, 18, pp. 577-587
  • Yamasaki, T., Takahashi, A., Pan, J., Yamaguchi, N., Yokoyama, K.K., Phosphorylation of activation transcription factor-2 at serine 121 by protein kinase C controls c-Jun-mediated activation of transcription (2009) J. Biol. Chem., 284, pp. 8567-8581
  • Hai, T.W., Liu, F., Coukos, W.J., Green, M.R., Transcription factor ATF cDNA clones: An extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers (1989) Genes Dev., 3, pp. 2083-2090
  • Kerppola, T.K., Curran, T., Selective DNA bending by a variety of bZIP proteins (1993) Mol. Cell. Biol., 13, pp. 5479-5489
  • Ronai, Z., ATF2 confers radiation resistance to human melanoma cells (1998) Oncogene, 16, pp. 523-531
  • Ma, Q., Activating transcription factor 2 controls Bcl-2 promoter activity in growth plate chondrocytes (2007) J. Cell Biochem., 101, pp. 477-487
  • Zenz, R., C-Jun regulates eyelid closure and skin tumor development through EGFR signaling (2003) Dev. Cell, 4, pp. 879-889
  • Shaulian, E., Karin, M., AP1 as a regulator of cell life and death (2002) Nature Cell Biol., 4, pp. E131-E136
  • Johnson, R., Spiegelman, B., Hanahan, D., Wisdom, R., Cellular transformation and malignancy induced by ras require c-jun (1996) Mol. Cell. Biol., 16, pp. 4504-4511
  • Behrens, A., Jochum, W., Sibilia, M., Wagner, E.F., Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation (2000) Oncogene, 19, pp. 2657-2663
  • Binetruy, B., Smeal, T., Karin, M., Ha-Ras augments c-Jun activity and stimulates phosphorylation of its activation domain (1991) Nature, 351, pp. 122-127
  • Talotta, F., An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP1 activity in RAS transformation (2009) Oncogene, 28, pp. 73-84
  • Milde-Langosch, K., The Fos family of transcription factors and their role in tumourigenesis (2005) Eur. J. Cancer, 41, pp. 2449-2461
  • Bergers, G., Graninger, P., Braselmann, S., Wrighton, C., Busslinger, M., Transcriptional activation of the fra-1 gene by AP1 is mediated by regulatory sequences in the first intron (1995) Mol. Cell. Biol., 15, pp. 3748-3758
  • Jenuwein, T., Muller, R., Structure-function analysis of fos protein: A single amino acid change activates the immortalizing potential of v-fos (1987) Cell, 48, pp. 647-657
  • Sunters, A., McCluskey, J., Grigoriadis, A.E., Control of cell cycle gene expression in bone development and during c-Fos-induced osteosarcoma formation (1998) Dev. Genet., 22, pp. 386-397
  • Ledwith, B.J., Manam, S., Kraynak, A.R., Nichols, W.W., Bradley, M.O., Antisense-fos RNA causes partial reversion of the transformed phenotypes induced by the c-Ha-ras oncogene (1990) Mol. Cell. Biol., 10, pp. 1545-1555
  • Olive, M., A dominant negative to activation protein-1 (AP1) that abolishes DNA binding and inhibits oncogenesis (1997) J. Biol. Chem., 272, pp. 18586-18594
  • Jochum, W., Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1 (2000) Nature Med., 6, pp. 980-984
  • Mikula, M., The proto-oncoprotein c-Fos negatively regulates hepatocellular tumorigenesis (2003) Oncogene, 22, pp. 6725-6738
  • Graves, M.L., Zhou, L., MacDonald, G., Mueller, C.R., Roskelley, C.D., Regulation of the BRCA1 promoter in ovarian surface epithelial cells and ovarian carcinoma cells (2007) FEBS Lett., 581, pp. 1825-1833
  • Abbas, S., Preclinical studies of celastrol and acetyl isogambogic acid in melanoma (2007) Clin. Cancer Res., 13, pp. 6769-6778
  • Bhoumik, A., Jones, N., Ronai, Z., Transcriptional switch by activating transcription factor 2-derived peptide sensitizes melanoma cells to apoptosis and inhibits their tumorigenicity (2004) Proc. Natl Acad. Sci. USA, 101, pp. 4222-4227
  • Vale-Cruz, D.S., Ma, Q., Syme, J., Luvalle, P.A., Activating transcription factor-2 affects skeletal growth by modulating pRb gene expression (2008) Mech. Dev., 125, pp. 843-856
  • Nakamura, T., Down-regulation of the cyclin A promoter in differentiating human embryonal carcinoma cells is mediated by depletion of ATF-1 and ATF-2 in the complex at the ATF/CRE site (1995) Exp. Cell Res., 216, pp. 422-430
  • Beier, F., Taylor, A.C., Luvalle, P., Activating transcription factor 2 is necessary for maximal activity and serum induction of the cyclin A promoter in chondrocytes (2000) J. Biol. Chem., 275, pp. 12948-12953
  • Bhoumik, A., Suppressor role of activating transcription factor 2 (ATF2) in skin cancer (2008) Proc. Natl Acad. Sci. USA, 105, pp. 1674-1679
  • Maekawa, T., ATF-2 controls transcription of Maspin and GADD45α genes independently from p53 to suppress mammary tumors (2008) Oncogene, 27, pp. 1045-1054
  • Chen, S.Y., Overexpression of phosphorylated-ATF2 and STAT3 in cutaneous squamous cell carcinoma, Bowen's disease and basal cell carcinoma (2008) J. Dermatol. Sci., 51, pp. 210-215
  • Knippen, S., Expression and prognostic value of activating transcription factor 2 (ATF2) and its phosphorylated form in mammary carcinomas (2009) Anticancer Res., 29, pp. 183-189
  • Lewis, J.S., Activation of cyclin D1 by estradiol and spermine in MCF-7 breast cancer cells: A mechanism involving the p38 MAP kinase and phosphorylation of ATF-2 (2005) Oncol. Res., 15, pp. 113-128
  • Berger, A.J., Subcellular localization of activating transcription factor 2 in melanoma specimens predicts patient survival (2003) Cancer Res., 63, pp. 8103-8107
  • Deng, X., Ionizing radiation induces prostate cancer neuroendocrine differentiation through interplay of CREB and ATF2: Implications for disease progression (2008) Cancer Res., 68, pp. 9663-9670
  • Daury, L., Opposing functions of ATF2 and Fos-like transcription factors in c-Jun-mediated myogenin expression and terminal differentiation of avian myoblasts (2001) Oncogene, 20, pp. 7998-8008
  • Chu, M., Guo, J., Chen, C.Y., Long-term exposure to nicotine, via ras pathway, induces cyclin D1 to stimulate G1 cell cycle transition (2005) J. Biol. Chem., 280, pp. 6369-6379
  • Manna, S.K., Long term environmental tobacco smoke activates nuclear transcription factor-κB, activator protein-1 and stress responsive kinases in mouse brain (2006) Biochem. Pharmacol., 71, pp. 1602-1609
  • Heintz, N.H., Janssen, Y.M., Mossman, B.T., (1993) Persistent Induction of C-fos and C-jun Expression by Asbestos. Proc. Natl Acad. Sci. USA, 90, pp. 3299-3303
  • Janssen, Y.M., Heintz, N.H., Marsh, J.P., Borm, P.J., Mossman, B.T., Induction of c-fos and c-jun proto-oncogenes in target cells of the lung and pleura by carcinogenic fibers (1994) Am. J. Respir. Cell. Mol. Biol., 11, pp. 522-530
  • Fried, U., Kotarsky, K., Alling, C., Chronic ethanol exposure enhances activating protein-1 transcriptional activity in human neuroblastoma cells (2001) Alcohol, 24, pp. 189-195
  • Matthews, C.P., Dominant-negative activator protein 1 (TAM67) targets cyclooxygenase-2 and osteopontin under conditions in which it specifically inhibits tumorigenesis (2007) Cancer Res., 67, pp. 2430-2438
  • Young, M.R., Transgenic mice demonstrate AP1 (activator protein-1) transactivation is required for tumor promotion (1999) Proc. Natl Acad. Sci. USA, 96, pp. 9827-9832
  • Astruc, M.E., Chabret, C., Bali, P., Gagne, D., Pons, M., Prolonged treatment of breast cancer cells with antiestrogens increases the activating protein-1-mediated response: Involvement of the estrogen receptor (1995) Endocrinology, 136, pp. 824-832
  • Brozovic, A., Long-term activation of SAPK/JNK, p38 kinase and fas-L expression by cisplatin is attenuated in human carcinoma cells that acquired drug resistance (2004) Int. J. Cancer, 112, pp. 974-985
  • Ozanne, B.W., Spence, H.J., McGarry, L.C., Hennigan, R.F., Transcription factors control invasion: AP1 the first among equals (2007) Oncogene, 26, pp. 1-10
  • Maeno, K., Altered regulation of c-jun and its involvement in anchorage-independent growth of human lung cancers (2005) Oncogene, 25, pp. 271-277
  • Shiratsuchi, T., Ishibashi, H., Shirasuna, K., Inhibition of epidermal growth factor-induced invasion by dexamethasone and AP1 decoy in human squamous cell carcinoma cell lines (2002) J. Cell Physiol., 193, pp. 340-348
  • Katiyar, S., Jiao, X., Wagner, E., Lisanti, M.P., Pestell, R.G., Somatic excision demonstrates that c-Jun induces cellular migration and invasion through induction of stem cell factor (2007) Mol. Cell. Biol., 27, pp. 1356-1369
  • Hommura, F., HMG-I/Y is a c-Jun/activator protein-1 target gene and is necessary for c-Jun-induced anchorage-independent growth in Rat1a cells (2004) Mol. Cancer Res., 2, pp. 305-314
  • Kinoshita, I., Identification of cJun-responsive genes in Rat-1a cells using multiple techniques: Increased expression of stathmin is necessary for cJun-mediated anchorage-independent growth (2003) Oncogene, 22, pp. 2710-2722
  • Jooss, K.U., Muller, R., Deregulation of genes encoding microfilament-associated proteins during Fos-induced morphological transformation (1995) Oncogene, 10, pp. 603-608
  • Westermarck, J., Activation of fibroblast collagenase-1 expression by tumor cells of squamous cell carcinomas is mediated by p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase-2 (2000) Cancer Res., 60, pp. 7156-7162
  • Reichmann, E., Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion (1992) Cell, 71, pp. 1103-1116
  • Belguise, K., Kersual, N., Galtier, F., Chalbos, D., FRA-1 expression level regulates proliferation and invasiveness of breast cancer cells (2005) Oncogene, 24, pp. 1434-1444
  • Ramos-Nino, M.E., Scapoli, L., Martinelli, M., Land, S., Mossman, B.T., Microarray analysis and RNA silencing link fra-1 to cd44 and c-met expression in mesothelioma (2003) Cancer Res., 63, pp. 3539-3545
  • Chen, S.Y., Concordant overexpression of phosphorylated ATF2 and STAT3 in extramammary Paget's disease (2009) J. Cutan. Pathol., 36, pp. 402-408
  • Jean, D., Bar-Eli, M., Regulation of tumor growth and metastasis of human melanoma by the CREB transcription factor family (2000) Mol. Cell Biochem., 212, pp. 19-28
  • Vleugel, M.M., Greijer, A.E., Bos, R., Van Der Wall, E., Van Diest, P.J., C-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer (2006) Hum. Pathol., 37, pp. 668-674
  • Zhang, G., Effect of deoxyribzymes targeting c-Jun on solid tumor growth and angiogenesis in rodents (2004) J. Natl Cancer Inst., 96, pp. 683-696
  • Zhang, G., Squamous cell carcinoma growth in mice and in culture is regulated by c-Jun and its control of matrix metalloproteinase-2 and-9 expression (2006) Oncogene, 25, pp. 7260-7266
  • Bowden, G.T., Schneider, B., Domann, R., Kulesz-Martin, M., Oncogene activation and tumor suppressor gene inactivation during multistage mouse skin carcinogenesis (1994) Cancer Res., 54, pp. 1882-1885
  • Toft, D.J., Rosenberg, S.B., Bergers, G., Volpert, O., Linzer, D.I.H., Reactivation of proliferin gene expression is associated with increased angiogenesis in a cell culture model of fibrosarcoma tumor progression (2001) Proc. Natl Acad. Sci. USA, 98, pp. 13055-13059
  • Ming, J., Zhang, Q., Qiu, X., Wang, E., Interleukin 7/ interleukin 7 receptor induce c-Fos/c-Jun-dependent vascular endothelial growth factor-D up-regulation: A mechanism of lymphangiogenesis in lung cancer (2009) Eur. J. Cancer, 45, pp. 866-873
  • Ham, J., A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death (1995) Neuron, 14, pp. 927-939
  • Wang, N., C-Jun triggers apoptosis in human vascular endothelial cells (1999) Circ. Res., 85, pp. 387-393
  • Podar, K., Up-regulation of c-Jun inhibits proliferation and induces apoptosis via caspase-triggered c-Abl cleavage in human multiple myeloma (2007) Cancer Res., 67, pp. 1680-1688
  • Bossy-Wetzel, E., Bakiri, L., Yaniv, M., Induction of apoptosis by the transcription factor c-Jun (1997) EMBO J., 16, pp. 1695-1709
  • Hettinger, K., C-Jun promotes cellular survival by suppression of PTEN (2006) Cell Death Differ., 14, pp. 218-229
  • Eferl, R., Liver Tumor development: C-Jun antagonizes the proapoptotic activity of p53 (2003) Cell, 112, pp. 181-192
  • Stepniak, E., C-Jun/AP1 controls liver regeneration by repressing p53/p21 and p38 MAPK activity (2006) Genes Dev., 20, pp. 2306-2314
  • Kalra, N., Kumar, V., C-Fos is a mediator of the c-myc-induced apoptotic signaling in serum-deprived hepatoma cells via the p38 mitogen-activated protein kinase pathway (2004) J. Biol. Chem., 279, pp. 25313-25319
  • Siegmund, D., Fas-associated death domain protein (FADD) and caspase-8 mediate up-regulation of c-Fos by Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via a FLICE inhibitory protein (FLIP)-regulated pathway (2001) J. Biol. Chem., 276, pp. 32585-32590
  • Kustikova, O., Fra-1 induces morphological transformation and increases in vitro invasiveness and motility of epithelioid adenocarcinoma cells (1998) Mol. Cell. Biol., 18, pp. 7095-7105
  • Shirsat, N.V., Shaikh, S.A., Overexpression of the immediate early gene fra-1 inhibits proliferation, induces apoptosis, and reduces tumourigenicity of c6 glioma cells (2003) Exp. Cell Res., 291, pp. 91-100
  • Jochum, W., Passegue, E., Wagner, E.F., AP1 in mouse development and tumorigenesis (2001) Oncogene, 20, pp. 2401-2412
  • Leppa, S., Eriksson, M., Saffrich, R., Ansorge, W., Bohmann, D., Complex functions of AP1 transcription factors in differentiation and survival of PC12 cells (2001) Mol. Cell. Biol., 21, pp. 4369-4378
  • Behrens, A., Sibilia, M., Wagner, E.F., Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation (1999) Nature Genet., 21, pp. 326-329
  • Yuan, Z., Opposing roles for ATF2 and c-Fos in c-Jun-mediated neuronal apoptosis (2009) Mol. Cell. Biol.
  • Li, W., Zhang, X., Olumi, A.F., MG-132 sensitizes TRAIL-resistant prostate cancer cells by activating c-Fos/c-Jun heterodimers and repressing c-FLIPL (2007) Cancer Res., 67, pp. 2247-2255
  • Adunyah, S.E., Chander, R., Barner, V.K., Cooper, R.S., Copper, R.S., Regulation of c-jun mRNA expression by hydroxyurea in human K562 cells during erythroid differentiation (1995) Biochim. Biophys. Acta, 1263, pp. 123-132
  • Santaguida, M., JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal (2009) Cancer Cell, 15, pp. 341-352
  • Hilberg, F., Aguzzi, A., Howells, N., Wagner, E.F., c-Jun is essential for normal mouse development and hepatogenesis (1993) Nature, 365 (6442), pp. 179-181. , DOI 10.1038/365179a0
  • Wo, Y., Zhu, D., Yu, Y., Lou, Y., Involvement of NF-κB and AP1 activation in icariin promoted cardiac differentiation of mouse embryonic stem cells (2008) Eur. J. Pharmacol., 586, pp. 59-66
  • Okuda, A., UTF1, a novel transcriptional coactivator expressed in pluripotent embryonic stem cells and extra-embryonic cells (1998) EMBO J., 17, pp. 2019-2032
  • Rapp, U.R., Troppmair, J., Beck, T., Birrer, M.J., Transformation by Raf and other oncogenes renders cells differentially sensitive to growth inhibition by a dominant negative c-jun mutant (1994) Oncogene, 9, pp. 3493-3498
  • Mathas, S., Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-κB (2002) EMBO J., 21, pp. 4104-4113
  • Drakos, E., C-Jun expression and activation are restricted to CD30+ lymphoproliferative disorders (2007) Am. J. Surg. Pathol., 31, pp. 447-453
  • Ouyang, X., Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer (2008) Cancer Res., 68, pp. 2132-2144
  • Mahner, S., C-Fos expression is a molecular predictor of progression and survival in epithelial ovarian carcinoma (2008) Br. J. Cancer, 99, pp. 1269-1275
  • Jin, S.P., Prognostic significance of loss of c-fos protein in gastric carcinoma (2007) Pathol. Oncol. Res., 13, pp. 284-289
  • Young, M.R., Colburn, N.H., Fra-1 a target for cancer prevention or intervention (2006) Gene, 379, pp. 1-11
  • Ramirez-Carrozzi, V., Kerppola, T., Asymmetric recognition of nonconsensus AP1 sites by Fos-Jun and Jun-Jun influences transcriptional cooperativity with NFAT1 (2003) Mol. Cell. Biol., 23, pp. 1737-1749
  • Huguier, S., Baguet, J., Perez, S., Van Dam, H., Castellazzi, M., Transcription factor ATF2 cooperates with v-Jun to promote growth factor-independent proliferation in vitro and tumor formation in vivo (1998) Mol. Cell. Biol., 18, pp. 7020-7029
  • Van Dam, H., Autocrine growth and anchorage independence: Two complementing Jun-controlled genetic programs of cellular transformation (1998) Genes D e V., 12, pp. 1227-1239
  • Sunters, A., Thomas, D.P., Yeudall, W.A., Grigoriadis, A.E., Accelerated cell cycle progression in osteoblasts overexpressing the c-fos proto-oncogene: Induction of cyclin A and enhanced CDK2 activity (2004) J. Biol. Chem., 279, pp. 9882-9891
  • Chalmers, C.J., Gilley, R., March, H.N., Balmanno, K., Cook, S.J., The duration of ERK1/2 activity determines the activation of c-Fos and Fra-1 and the composition and quantitative transcriptional output of AP1 (2007) Cell Signal, 19, pp. 695-704
  • De Cesare, D., Heterodimerization of c-Jun with ATF-2 and c-Fos is required for positive and negative regulation of the human urokinase enhancer (1995) Oncogene, 11, pp. 365-376
  • Lemaigre, F.P., Ace, C.I., Green, M.R., The cAMP response element binding protein, CREB, is a potent inhibitor of diverse transcriptional activators (1993) Nucleic Acids Res., 21, pp. 2907-2911
  • Rutberg, S.E., CRE DNA binding proteins bind to the AP1 target sequence and suppress AP1 transcriptional activity in mouse keratinocytes (1999) Oncogene, 18, pp. 1569-1579
  • Chiu, R., Angel, P., Karin, M., JunB differs in its biological properties from, and is a negative regulator of c-Jun (1989) Cell, 59, pp. 979-986
  • Mechta, F., Lallemand, D., Pfarr, C.M., Yaniv, M., Transformation by ras modifies AP1 composition and activity (1997) Oncogene, 14, pp. 837-847
  • Flint, K.J., Jones, N.C., Differential regulation of three members of the ATF/CREB family of DNA-binding proteins (1991) Oncogene, 6, pp. 2019-2026
  • Hagmeyer, B.M., Angel, P., Van Dam, H., Modulation of AP1/ATF transcription factor activity by the adenovirus-E1A oncogene products (1995) Bioessays, 17, pp. 621-629
  • Pospelova, T.V., E1A+ cHa-ras transformed rat embryo fibroblast cells are characterized by high and constitutive DNA binding activities of AP1 dimers with significantly altered composition (1999) Gene Expr, 8, pp. 19-32
  • Abdel-Hafiz, H.A., Chen, C.Y., Marcell, T., Kroll, D.J., Hoeffler, J.P., Structural determinants outside of the leucine zipper influence the interactions of CREB and ATF-2: Interaction of CREB with ATF-2 blocks E1a-ATF-2 complex formation (1993) Oncogene, 8, pp. 1161-1174
  • Chinenov, Y., Kerppola, T.K., Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity (2001) Oncogene, 20, pp. 2438-2452
  • Kara, C.J., Liou, H.C., Ivashkiv, L.B., Glimcher, L.H., A cDNA for a human cyclic AMP response element-binding protein which is distinct from CREB and expressed preferentially in brain (1990) Mol. Cell. Biol., 10, pp. 1347-1357
  • Georgopoulos, K., Morgan, B.A., Moore, D.D., Functionally distinct isoforms of the CRE-BP DNA-binding protein mediate activity of a T-cell-specific enhancer (1992) Mol. Cell. Biol., 12, pp. 747-757
  • Bailey, J., Europe-Finner, G.N., Identification of human myometrial target genes of the c-Jun NH2-terminal kinase (JNK) pathway: The role of activating transcription factor 2 (ATF2) and a novel spliced isoform ATF2-small (2005) J. Mol. Endocrinol., 34, pp. 19-35
  • Ransone, L.J., Verma, I.M., Nuclear proto-oncogenes fos and jun (1990) Annu. Rev. Cell Biol., 6, pp. 539-557
  • Wei, W., Jin, J., Schlisio, S., Harper, J.W., Kaelin, J.W.G., The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase (2005) Cancer Cell, 8, pp. 25-33
  • Huang, C.C., Calcineurin-mediated dephosphorylation of c-Jun Ser-243 is required for c-Jun protein stability and cell transformation (2007) Oncogene, 27, pp. 2422-2429
  • Wang, Y.-N., Chen, Y.-J., Chang, W.-C., Activation of extracellular signal-regulated kinase signaling by epidermal growth factor mediates c-Jun activation and p300 recruitment in keratin 16 gene expression (2006) Mol. Pharmacol., 69, pp. 85-98
  • Wertz, I.E., Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase (2004) Science, 303, pp. 1371-1374
  • Szabo, E., Riffe, M.E., Steinberg, S.M., Birrer, M.J., Linnoila, R.I., Altered cJun expression: An early event in human lung carcinogenesis (1996) Cancer Res., 56, pp. 305-315
  • Rangatia, J., Elevated c-Jun expression in acute myeloid leukemias inhibits C/EBPα DNA binding via leucine zipper domain interaction (2003) Oncogene, 22, pp. 4760-4764
  • Zhang, W., Hart, J., McLeod, H.L., Wang, H.L., Differential expression of the AP1 transcription factor family members in human colorectal epithelial and neuroendocrine neoplasms (2005) Am. J. Clin. Path., 124, pp. 11-19
  • Tessari, G., The expression of proto-oncogene c-jun in human pancreatic cancer (1999) Anticancer Res., 19, pp. 863-867
  • Acay, R.R., Santos, E.D., Machado De Sousa, S.O., Correlation between c-Jun and human papillomavirus in oral premalignant and malignant lesions (2008) Oral Oncology, 44, pp. 698-702
  • Assimakopoulou, M., Varakis, J., AP1 and heat shock protein 27 expression in human astrocytomas (2001) J. Cancer Res. Clin. Oncol., 127, pp. 727-732
  • Papachristou, D.J., Batistatou, A., Sykiotis, G.P., Varakis, I., Papavassiliou, A.G., Activation of the JNK-AP1 signal transduction pathway is associated with pathogenesis and progression of human osteosarcomas (2003) Bone, 32, pp. 364-371
  • Assimakopoulou, M., Kondyli, M., Gatzounis, G., Maraziotis, T., Varakis, J., Neurotrophin receptors expression and JNK pathway activation in human astrocytomas (2007) BMC Cancer, 7, p. 202
  • Langer, S., Jun and Fos family protein expression in human breast cancer: Correlation of protein expression and clinicopathological parameters (2006) Eur. J. Gynaecol Oncol., 27, pp. 345-352
  • Mao, X., Orchard, G., Abnormal AP1 protein expression in primary cutaneous B-cell lymphomas (2008) Br. J. Dermatol., 159, pp. 145-151
  • Wang, H., Birkenbach, M., Hart, J., Expression of Jun family members in human colorectal adenocarcinoma (2000) Carcinogenesis, 21, pp. 1313-1317
  • Linardopoulos, S., Human lung and bladder carcinoma tumors as compared to their adjacent normal tissue have elevated AP1 activity associated with the retinoblastoma gene promoter (1993) Anticancer Res., 13, pp. 257-262
  • Bamberger, A.M., Milde-Langosch, K., Rossing, E., Goemann, C., Loning, T., Expression pattern of the AP1 family in endometrial cancer: Correlations with cell cycle regulators (2001) J. Cancer Res. Clin. Oncol., 127, pp. 545-550
  • Prusty, B.K., Das, B.C., Constitutive activation of transcription factor AP1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP1 activity in HeLa cells by curcumin (2005) Int. J. Cancer, 113, pp. 951-960
  • Cirillo, G., Role of distinct mitogen-activated protein kinase pathways and cooperation between Ets-2, ATF-2, and Jun family members in human urokinase-type plasminogen activator gene induction by interleukin-1 and tetradecanoyl phorbol acetate (1999) Mol. Cell. Biol., 19, pp. 6240-6252
  • Lin, D.W., Transforming growth factor beta up-regulates cysteine-rich protein 2 in vascular smooth muscle cells via activating transcription factor 2 (2008) J. Biol. Chem., 283, pp. 15003-15014
  • Read, M.A., Tumor necrosis factorα-induced E-selectin expression is activated by the nuclear factor-kappaB and c-JUN N-terminal kinase/p38 mitogen-activated protein kinase pathways (1997) J. Biol. Chem., 272, pp. 2753-2761
  • Herr, I., Autoamplification of apoptosis following ligation of CD95-L, TRAIL and TNF-α (2000) Oncogene, 19, pp. 4255-4262
  • Kool, J., Induction of ATF3 by ionizing radiation is mediated via a signaling pathway that includes ATM, Nibrin1, stress-induced MAPkinases and ATF-2 (2003) Oncogene, 22, pp. 4235-4242
  • Bhat, N.R., Feinstein, D.L., Shen, Q., Bhat, A.N., P38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells. Roles of nuclear factors, nuclear factor KB, cAMP response element-binding protein, CCAAT/enhancer-binding protein-p, and activating transcription factor-2 (2002) J. Biol. Chem., 277, pp. 29584-29592
  • Penix, L.A., The proximal regulatory element of the interferon-y promoter mediates selective expression in T cells (1996) J. Biol. Chem., 271, pp. 31964-31972
  • Chen, K.D., Hung, J.J., Huang, H.L., Chang, M.D., Lai, Y.K., Rapid induction of the Grp78 gene by cooperative actions of okadaic acid and heat-shock in 9L rat brain tumor cells-involvement of a cAMP responsive element-like promoter sequence and a protein kinase A signaling pathway (1997) Eur. J. Biochem., 248, pp. 120-129
  • Suzuki, T., Yamakuni, T., Hagiwara, M., Ichinose, H., Identification of ATF-2 as a transcriptional regulator for the tyrosine hydroxylase gene (2002) J. Biol. Chem., 277, pp. 40768-40774
  • Akimoto, T., Exercise stimulates Pgc-1a transcription in skeletal muscle through activation of the p38 MAPK pathway (2005) J. Biol. Chem., 280, pp. 19587-19593
  • Kawasaki, H., P300 and ATF-2 are components of the DRF complex, which regulates retinoic acid-and E1 A-mediated transcription of the c-jun gene in F9 cells (1998) Genes Dev., 12, pp. 233-245
  • Zhang, J.Y., The JNK/AP1/ATF2 pathway is involved in H2O2-induced acetylcholinesterase expression during apoptosis (2008) Cell. Mol. Life Sci., 65, pp. 1435-1445

Citas:

---------- APA ----------
Lopez-Bergami, P., Lau, E. & Ronai, Z. (2010) . Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nature Reviews Cancer, 10(1), 65-76.
http://dx.doi.org/10.1038/nrc2681
---------- CHICAGO ----------
Lopez-Bergami, P., Lau, E., Ronai, Z. "Emerging roles of ATF2 and the dynamic AP1 network in cancer" . Nature Reviews Cancer 10, no. 1 (2010) : 65-76.
http://dx.doi.org/10.1038/nrc2681
---------- MLA ----------
Lopez-Bergami, P., Lau, E., Ronai, Z. "Emerging roles of ATF2 and the dynamic AP1 network in cancer" . Nature Reviews Cancer, vol. 10, no. 1, 2010, pp. 65-76.
http://dx.doi.org/10.1038/nrc2681
---------- VANCOUVER ----------
Lopez-Bergami, P., Lau, E., Ronai, Z. Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat. Rev. Cancer. 2010;10(1):65-76.
http://dx.doi.org/10.1038/nrc2681