Artículo

Defelipe, L.A.; Do Porto, D.F.; Pereira Ramos, P.I.; Nicolás, M.F.; Sosa, E.; Radusky, L.; Lanzarotti, E.; Turjanski, A.G.; Marti, M.A. "A whole genome bioinformatic approach to determine potential latent phase specific targets in Mycobacterium tuberculosis" (2016) Tuberculosis. 97:181-192
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Summary Current Tuberculosis treatment is long and expensive, faces the increasing burden of MDR/XDR strains and lack of effective treatment against latent form, resulting in an urgent need of new anti-TB drugs. Key to TB biology is its capacity to fight the host's RNOS mediated attack. RNOS are known to display a concentration dependent mycobactericidal activity, which leads to the following hypothesis "if we know which proteins are targeted by RNOS and kill TB, we we might be able to inhibit them with drugs resulting in a synergistic bactericidal effect". Based on this idea, we performed an Mtb metabolic network whole proteome analysis of potential RNOS sensitive and relevant targets which includes target druggability and essentiality criteria. Our results, available at http://tuberq.proteinq.com.ar yield new potential TB targets, like I3PS, while also providing and updated view of previous proposals becoming an important tool for researchers looking for new ways of killing TB. © 2015 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:A whole genome bioinformatic approach to determine potential latent phase specific targets in Mycobacterium tuberculosis
Autor:Defelipe, L.A.; Do Porto, D.F.; Pereira Ramos, P.I.; Nicolás, M.F.; Sosa, E.; Radusky, L.; Lanzarotti, E.; Turjanski, A.G.; Marti, M.A.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Plataforma de Bioinformática Argentina, Instituto de Cálculo, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, UBA, Pabellón 2, Buenos Aires, Argentina
Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Bahia, Brazil
Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
Palabras clave:Latent phase; Mycobacterium tuberculosis; Reactive oxygen and nitrogen species (RNOS); Structural bioinformatics; proteome; bacterial protein; reactive nitrogen species; reactive oxygen metabolite; tuberculostatic agent; amino acid sequence; Article; bacterial metabolism; bactericidal activity; bioinformatics; controlled study; genome; infection; meta analysis (topic); microarray analysis; Mycobacterium tuberculosis; nonhuman; oxidative stress; priority journal; sensitivity analysis; stress; structural homology; animal; bacterial genome; biology; C57BL mouse; DNA microarray; drug development; drug effects; gene expression profiling; genetic database; genetics; genome-wide association study; host pathogen interaction; human; latent tuberculosis; meta analysis; metabolism; microbial viability; microbiology; molecularly targeted therapy; Mycobacterium tuberculosis; pathogenicity; procedures; protein protein interaction; signal transduction; Animals; Antitubercular Agents; Bacterial Proteins; Computational Biology; Databases, Genetic; Drug Discovery; Gene Expression Profiling; Genome, Bacterial; Genome-Wide Association Study; Host-Pathogen Interactions; Humans; Latent Tuberculosis; Mice, Inbred C57BL; Microbial Viability; Molecular Targeted Therapy; Mycobacterium tuberculosis; Oligonucleotide Array Sequence Analysis; Protein Interaction Maps; Reactive Nitrogen Species; Reactive Oxygen Species; Signal Transduction
Año:2016
Volumen:97
Página de inicio:181
Página de fin:192
DOI: http://dx.doi.org/10.1016/j.tube.2015.11.009
Título revista:Tuberculosis
Título revista abreviado:Tuberculosis
ISSN:14729792
CODEN:TUBEC
CAS:Antitubercular Agents; Bacterial Proteins; Reactive Nitrogen Species; Reactive Oxygen Species
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14729792_v97_n_p181_Defelipe

Referencias:

  • WHO, (2014) Global Tuberculosis Report 2014, p. 171. , http://apps.who.int/iris/handle/10665/91355
  • Wayne, L.G., Sohaskey, C.D., Nonreplicating persistence of mycobacterium tuberculosis (2001) Annu Rev Microbiol, 55, pp. 139-163
  • Lillebaek, T., Dirksen, A., Vynnycky, E., Baess, I., Thomsen, V.O., Andersen, A.B., Stability of DNA patterns and evidence of Mycobacterium tuberculosis reactivation occurring decades after the initial infection (2003) J Infect Dis, 188 (7), pp. 1032-1039
  • Barry, C.E., Boshoff, H.I., Dartois, V., Dick, T., Ehrt, S., Flynn, J., Schnappinger, D., Young, D., The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies (2009) Nat Rev Microbiol, 7 (12), pp. 845-855. , http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4144869%5c%26tool=pmcentrez%5c%26rendertype=abstract
  • Koul, A., Arnoult, E., Lounis, N., Guillemont, J., Andries, K., The challenge of new drug discovery for tuberculosis (2011) Nature, 469 (7331), pp. 483-490
  • Murphy, D.J., Brown, J.R., Identification of gene targets against dormant phase Mycobacterium tuberculosis infections (2007) BMC Infect Dis, 7, p. 84. , http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1950094/&tool=pmcentrez/&rendertype=abstract
  • Nathan, C., Ehrt, S., Nitric oxide in tuberculosis (2004) Tuberculosis, , W. Rom, S. Garay, 2nd ed. Lippincott Williams and Wilkins Philadelphia, PA
  • Matsumoto, M., Hashizume, H., Tomishige, T., Kawasaki, M., Tsubouchi, H., Sasaki, H., Shimokawa, Y., Komatsu, M., Opc-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice (2006) PLoS Med, 3 (11), p. e466
  • Singh, R., Manjunatha, U., Boshoff, H.I., Ha, Y.H., Niyomrattanakit, P., Ledwidge, R., Dowd, C.S., Zhang, L., Pa-824 kills nonreplicating mycobacterium tuberculosis by intracellular no release (2008) Science, 322 (5906), pp. 1392-1395
  • Cellitti, S.E., Shaffer, J., Jones, D.H., Mukherjee, T., Gurumurthy, M., Bursulaya, B., Boshoff, H.I., Lee, Y.S., Structure of ddn, the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis involved in bioreductive activation of pa-824 (2012) Structure, 20 (1), pp. 101-112
  • Manjunatha, U., Boshoff, H.I., Barry, C.E., III, The mechanism of action of pa-824 (2009) Commun. Integr Biol, 2, pp. 215-218
  • Rhee, K.Y., Erdjument-Bromage, H., Tempst, P., Nathan, C.F., S-nitroso proteome of mycobacterium tuberculosis: Enzymes of intermediary metabolism and antioxidant defense (2005) Proc Natl Acad Sci U. S. A, 102 (2), pp. 467-472
  • Betts, J.C., Lukey, P.T., Robb, L.C., McAdam, R.A., Duncan, K., Evaluation of a nutrient starvation model of mycobacterium tuberculosis persistence by gene and protein expression profiling (2002) Mol Microbiol, 43 (3), pp. 717-731
  • Hampshire, T., Soneji, S., Bacon, J., James, B.W., Hinds, J., Laing, K., Stabler, R.A., Butcher, P.D., Stationary phase gene expression of Mycobacterium tuberculosis following a progressive nutrient depletion: A model for persistent organisms? (2004) Tuberculosis, 84 (3), pp. 228-238
  • Muttucumaru, D., Roberts, G., Hinds, J., Stabler, R.A., Parish, T., Gene expression profile of Mycobacterium tuberculosis in a non-replicating state (2004) Tuberculosis, 84 (3), pp. 239-246
  • Karakousis, P.C., Yoshimatsu, T., Lamichhane, G., Woolwine, S.C., Nuermberger, E.L., Grosset, J., Bishai, W.R., Dormancy phenotype displayed by extracellular mycobacterium tuberculosis within artificial granulomas in mice (2004) J Exp Med, 200 (5), pp. 647-657
  • Ohno, H., Zhu, G., Mohan, V.P., Chu, D., Kohno, S., Jacobs, W.R., Chan, J., The effects of reactive nitrogen intermediates on gene expression in mycobacterium tuberculosis (2003) Cell Microbiol, 5 (9), pp. 637-648
  • Rengarajan, J., Bloom, B.R., Rubin, E.J., Genome-wide requirements for mycobacterium tuberculosis adaptation and survival in macrophages (2005) Proc Natl Acad Sci U. S. A, 102 (23), pp. 8327-8332
  • Schnappinger, D., Ehrt, S., Voskuil, M.I., Liu, Y., Mangan, J.A., Monahan, I.M., Dolganov, G., Nathan, C., Transcriptional adaptation of mycobacterium tuberculosis within macrophages insights into the phagosomal environment (2003) J Exp Med, 198 (5), pp. 693-704
  • Talaat, A.M., Lyons, R., Howard, S.T., Johnston, S.A., The temporal expression profile of mycobacterium tuberculosis infection in mice (2004) Proc Natl Acad Sci U. S. A, 101 (13), pp. 4602-4607
  • Voskuil, M.I., Schnappinger, D., Visconti, K.C., Harrell, M.I., Dolganov, G.M., Sherman, D.R., Schoolnik, G.K., Inhibition of respiration by nitric oxide induces a mycobacterium tuberculosis dormancy program (2003) J Exp Med, 198 (5), pp. 705-713
  • Voskuil, M.I., Bartek, I.L., Visconti, K., Schoolnik, G.K., The response of mycobacterium tuberculosis to reactive oxygen and nitrogen species Front Microbiol 2
  • Robinson, J.L., Adolfsen, K.J., Brynildsen, M.P., Deciphering nitric oxide stress in bacteria with quantitative modeling (2014) Curr Opin Microbiol, 19, pp. 16-24
  • Park, H.-D., Guinn, K.M., Harrell, M.I., Liao, R., Voskuil, M.I., Tompa, M., Schoolnik, G.K., Sherman, D.R., Rv3133c/dosr is a transcription factor that mediates the hypoxic response of mycobacterium tuberculosis (2003) Mol Microbiol, 48 (3), pp. 833-843
  • Raman, K., Yeturu, K., Chandra, N., Targettb: A target identification pipeline for mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis (2008) BMC Syst Biol, 2 (1), p. 109
  • Kinnings, S.L., Xie, L., Fung, K.H., Jackson, R.M., Xie, L., Bourne, P.E., The mycobacterium tuberculosis drugome and its polypharmacological implications (2010) PLoS Comput Biol, 6 (11)
  • Radusky, L., Defelipe, L.A., Lanzarotti, E., Luque, J., Barril, X., Marti, M.A., Turjanski, A.G., Tuberq: A mycobacterium tuberculosis protein druggability database (2014) Database, 2014
  • Groemping, Y., Rittinger, K., Activation and assembly of the nadph oxidase: A structural perspective (2005) Biochem J, 386, pp. 401-416
  • MacMicking, J., Xie Q.-w., Nathan, C., Nitric oxide and macrophage function (1997) Annu Rev Immunol, 15 (1), pp. 323-350
  • Ferrer-Sueta, G., Radi, R., Chemical biology of peroxynitrite: Kinetics, diffusion, and radicals (2009) ACS Chem Biol, 4 (3), pp. 161-177
  • Alvarez, M.N., Peluffo, G., Piacenza, L., Radi, R., Intraphagosomal peroxynitrite as a macrophage-derived cytotoxin against internalized trypanosoma cruzi consequences for oxidative killing and role of microbial peroxiredoxins in infectivity (2011) J Biol Chem, 286 (8), pp. 6627-6640
  • Denicola, A., Freeman, B.A., Trujillo, M., Radi, R., Peroxynitrite reaction with carbon dioxide/bicarbonate: Kinetics and influence on peroxynitrite-mediated oxidations (1996) Arch Biochem Biophys, 333 (1), pp. 49-58
  • Hugo, M., Radi, R., Trujillo, M., (2012) Thiol Dependent Peroxidases in Mycobacterium Tuberculosis in Understanding Tuberculosis: Deciphering the Secret Life of the Bacilli, , p.-j. cardona
  • Nathan, C., Specificity of a third kind: Reactive oxygen and nitrogen intermediates in cell signaling (2003) J Clin Investig, 111 (6), pp. 769-778
  • Ignarro, L.J., Nitric oxide: A unique endogenous signaling molecule in vascular biology (nobel lecture) (1999) Angew Chem Int Ed, 38 (13-14), pp. 1882-1892
  • Hess, D.T., Matsumoto, A., Kim, S.-O., Marshall, H.E., Stamler, J.S., Protein s-nitrosylation: Purview and parameters (2005) Nat Rev Mol Cell Biol, 6 (2), pp. 150-166
  • Ouellet, H., Lang, J., Couture, M., Ortiz De Montellano, P.R., Reaction of mycobacterium tuberculosis cytochrome p450 enzymes with nitric oxide† (2009) Biochemistry, 48 (5), pp. 863-872
  • Radi, R., Nitric oxide, oxidants, and protein tyrosine nitration (2004) Proc Natl Acad Sci, 101 (12), pp. 4003-4008
  • Souza, J.M., Peluffo, G., Radi, R., Protein tyrosine nitration-functional alteration or just a biomarker? (2008) Free Radic Biol Med, 45 (4), pp. 357-366
  • Yamakura, F., Taka, H., Fujimura, T., Murayama, K., Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine (1998) J Biol Chem, 273 (23), pp. 14085-14089
  • Xu, S., Ying, J., Jiang, B., Guo, W., Adachi, T., Sharov, V., Lazar, H., Bigelow, D., Detection of sequence-specific tyrosine nitration of manganese sod and serca in cardiovascular disease and aging (2006) Am J Physiol-Heart Circ Physiol, 290 (6), pp. H2220-H2227
  • Viner, R., Ferrington, D., Williams, T., Bigelow, D., Schoneich, C., Protein modification during biological aging: Selective tyrosine nitration of the serca2a isoform of the sarcoplasmic reticulum ca2+-atpase in skeletal muscle (1999) Biochem J, 340, pp. 657-669
  • Knyushko, T.V., Sharov, V.S., Williams, T.D., Schöneich, C., Bigelow, D.J., 3-nitrotyrosine modification of serca2a in the aging heart: A distinct signature of the cellular redox environment (2005) Biochemistry, 44 (39), pp. 13071-13081
  • Schopfer, M.P., Mondal, B., Lee, D.-H., Sarjeant, A.A., Karlin, K.D., Heme/o2/• no nitric oxide dioxygenase (nod) reactivity: Phenolic nitration via a putative heme-peroxynitrite intermediate (2009) J Am Chem Soc, 131 (32), pp. 11304-11305
  • Cole, S., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S., Barry, C.R., Deciphering the biology of mycobacterium tuberculosis from the complete genome sequence (1998) Nature, 393 (6685), pp. 537-544
  • The universal protein resource (uniprot) (2008) Nucleic Acids Res, 36, pp. D190-D195
  • Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths-Jones, S., Khanna, A., Sonnhammer, E.L., The pfam protein families database (2004) Nucleic Acids Res, 32, pp. D138-D141
  • Sherman, D.R., Voskuil, M., Schnappinger, D., Liao, R., Harrell, M.I., Schoolnik, G.K., Regulation of the mycobacterium tuberculosis hypoxic response gene encoding α-crystallin (2001) Proc Natl Acad Sci, 98 (13), pp. 7534-7539
  • Sassetti, C.M., Rubin, E.J., Genetic requirements for mycobacterial survival during infection (2003) Proc Natl Acad Sci, 100 (22), pp. 12989-12994
  • Sassetti, C.M., Boyd, D.H., Rubin, E.J., Genes required for mycobacterial growth defined by high density mutagenesis (2003) Mol Microbiol, 48 (1), pp. 77-84
  • Griffin, J.E., Gawronski, J.D., DeJesus, M.A., Ioerger, T.R., Akerley, B.J., Sassetti, C.M., High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism (2011) PLoS Pathog, 7 (9)
  • Schmidtke, P., Barril, X., Understanding and predicting druggability. a high-throughput method for detection of drug binding sites (2010) J Med Chem, 53 (15), pp. 5858-5867
  • Karp, P.D., Paley, S., Romero, P., The pathway tools software (2002) Bioinformatics, 18, pp. S225-S232
  • Lew, J.M., Kapopoulou, A., Jones, L.M., Cole, S.T., Tuberculist-10 years after (2011) Tuberculosis, 91 (1), pp. 1-7
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Ideker, T., Cytoscape: A software environment for integrated models of biomolecular interaction networks (2003) Genome Res, 13 (11), pp. 2498-2504
  • Yeh, I., Hanekamp, T., Tsoka, S., Karp, P.D., Altman, R.B., Computational analysis of plasmodium falciparum metabolism: Organizing genomic information to facilitate drug discovery (2004) Genome Res, 14 (5), pp. 917-924
  • Brandes, U., A faster algorithm for betweenness centrality∗ (2001) J Math Sociol, 25 (2), pp. 163-177
  • Voskuil, M.I., Visconti, K., Schoolnik, G., Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy (2004) Tuberculosis, 84 (3), pp. 218-227
  • Wehenkel, A., Fernandez, P., Bellinzoni, M., Catherinot, V., Barilone, N., Labesse, G., Jackson, M., Alzari, P.M., The structure of pknb in complex with mitoxantrone, an atp-competitive inhibitor, suggests a mode of protein kinase regulation in mycobacteria (2006) FEBS Lett, 580 (13), pp. 3018-3022
  • Hopkins, A.L., Groom, C.R., The druggable genome (2002) Nat Rev Drug Discov, 1 (9), pp. 727-730
  • Newton, G.L., Fahey, R.C., Mycothiol biochemistry (2002) Arch Microbiol, 178 (6), pp. 388-394
  • Lunardi, J., Nunes, E.S., Bizarro, C.V., Augusto Basso, L.A., Santiago Santos, D., Machado, P., Targeting the histidine pathway in mycobacterium tuberculosis (2013) Curr Top Med Chem, 13 (22), pp. 2866-2884
  • Barry, C.E., Crick, D.C., McNeil, M.R., Targeting the formation of the cell wall core of m. tuberculosis (2007) Infect Disord-Drug Targets (Former Curr Drug Targets-Infect Disord, 7 (2), pp. 182-202
  • Singhal, A., Arora, G., Sajid, A., Maji, A., Bhat, A., Virmani, R., Upadhyay, S., Singh, Y., Regulation of homocysteine metabolism by mycobacterium tuberculosis s-adenosylhomocysteine hydrolase Sci Rep 3.
  • Raman, K., Chandra, N., Mycobacterium tuberculosis interactome analysis unravels potential pathways to drug resistance (2008) BMC Microbiol, 8 (1), p. 234
  • Rao, S.T., Rossmann, M.G., Comparison of super-secondary structures in proteins (1973) J Mol Biol, 76 (2), pp. 241-256
  • Allary, M., Lu, J.Z., Zhu, L., Prigge, S.T., Scavenging of the cofactor lipoate is essential for the survival of the malaria parasite plasmodium falciparum (2007) Mol Microbiol, 63 (5), pp. 1331-1344
  • Bryk, R., Lima, C., Erdjument-Bromage, H., Tempst, P., Nathan, C., Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein (2002) Science, 295 (5557), pp. 1073-1077
  • Spalding, M.D., Prigge, S.T., Lipoic acid metabolism in microbial pathogens (2010) Microbiol Mol Biol Rev, 74 (2), pp. 200-228
  • Ma, Q., Zhao, X., Eddine, A.N., Geerlof, A., Li, X., Cronan, J.E., Kaufmann, S.H., Wilmanns, M., The mycobacterium tuberculosis lipb enzyme functions as a cysteine/lysine dyad acyltransferase (2006) Proc Natl Acad Sci, 103 (23), pp. 8662-8667
  • Chan, K., Knaak, T., Satkamp, L., Humbert, O., Falkow, S., Ramakrishnan, L., Complex pattern of mycobacterium marinum gene expression during long-term granulomatous infection (2002) Proc Natl Acad Sci, 99 (6), pp. 3920-3925
  • Scandurra, G.M., Ryan, A.A., Pinto, R., Britton, W.J., Triccas, J.A., Contribution of l-alanine dehydrogenase to in vivo persistence and protective efficacy of the bcg vaccine (2006) Microbiol Immunol, 50 (10), pp. 805-810
  • Hasan, S., Daugelat, S., Rao, P.S., Schreiber, M., Prioritizing genomic drug targets in pathogens: Application to mycobacterium tuberculosis (2006) PLoS Comput Biol, 2 (6), p. e61
  • Raman, K., Rajagopalan, P., Chandra, N., Flux balance analysis of mycolic acid pathway: Targets for anti-tubercular drugs (2005) PLoS Comput Biol, 1 (5), p. e46
  • Agüero, F., Al-Lazikani, B., Aslett, M., Berriman, M., Buckner, F.S., Campbell, R.K., Carmona, S., Chen, F., Genomic-scale prioritization of drug targets: The tdr targets database (2008) Nat Rev Drug Discov, 7 (11), pp. 900-907
  • Jamshidi, N., Palsson, B.Ø., Investigating the metabolic capabilities of mycobacterium tuberculosis h37rv using the in silico strain inj661 and proposing alternative drug targets (2007) BMC Syst Biol, 1 (1), p. 26
  • Hopkins, A.L., Network pharmacology: The next paradigm in drug discovery (2008) Nat Chem Biol, 4 (11), pp. 682-690
  • Zambrowicz, B.P., Sands, A.T., Modeling drug action in the mouse with knockouts and rna interference (2004) Drug Discov Today TARGETS, 3 (5), pp. 198-207
  • Winzeler, E.A., Shoemaker, D.D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Bussey, H., Functional characterization of the s. cerevisiae genome by gene deletion and parallel analysis (1999) Science, 285 (5429), pp. 901-906
  • Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Véronneau, S., Dow, S., André, B., Functional profiling of the saccharomyces cerevisiae genome (2002) Nature, 418 (6896), pp. 387-391
  • Hillenmeyer, M.E., Fung, E., Wildenhain, J., Pierce, S.E., Hoon, S., Lee, W., Proctor, M., Koller, D., The chemical genomic portrait of yeast: Uncovering a phenotype for all genes (2008) Science, 320 (5874), pp. 362-365
  • Barry, C.E., Blanchard, J.S., The chemical biology of new drugs in the development for tuberculosis (2010) Curr Opin Chem Biol, 14 (4), pp. 456-466
  • Koul, A., Dendouga, N., Vergauwen, K., Molenberghs, B., Vranckx, L., Willebrords, R., Ristic, Z., Guillemont, J., Diarylquinolines target subunit c of mycobacterial atp synthase (2007) Nat Chem Biol, 3 (6), pp. 323-324
  • Haagsma, A.C., Abdillahi-Ibrahim, R., Wagner, M.J., Krab, K., Vergauwen, K., Guillemont, J., Andries, K., Bald, D., Selectivity of tmc207 towards mycobacterial atp synthase compared with that towards the eukaryotic homologue (2009) Antimicrob Agents Chemother, 53 (3), pp. 1290-1292
  • Anand, P., Chandra, N., Characterizing the pocketome of mycobacterium tuberculosis and application in rationalizing polypharmacological target selection Sci Rep 4
  • Movahedzadeh, F., Smith, D.A., Norman, R.A., Dinadayala, P., Murray-Rust, J., Russell, D.G., Kendall, S.L., Bancroft, G.J., The mycobacterium tuberculosis ino1 gene is essential for growth and virulence (2004) Mol Microbiol, 51 (4), pp. 1003-1014
  • Dubée, V., Triboulet, S., Mainardi, J.-L., Ethève-Quelquejeu, M., Gutmann, L., Marie, A., Dubost, L., Arthur, M., Inactivation of mycobacterium tuberculosis l, d-transpeptidase ldtmt1 by carbapenems and cephalosporins (2012) Antimicrob Agents Chemother, 56 (8), pp. 4189-4195
  • Cordillot, M., Dubée, V., Triboulet, S., Dubost, L., Marie, A., Hugonnet, J.-E., Arthur, M., Mainardi, J.-L., In vitro cross-linking of mycobacterium tuberculosis peptidoglycan by l, d-transpeptidases and inactivation of these enzymes by carbapenems (2013) Antimicrob Agents Chemother, 57 (12), pp. 5940-5945
  • Feng, Z., Barletta, R.G., Roles of mycobacterium smegmatis d-alanine: D-alanine ligase and d-alanine racemase in the mechanisms of action of and resistance to the peptidoglycan inhibitor d-cycloserine (2003) Antimicrob Agents Chemother, 47 (1), pp. 283-291
  • Belanger, A.E., Besra, G.S., Ford, M.E., Mikusová, K., Belisle, J.T., Brennan, P.J., Inamine, J.M., The embab genes of mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol (1996) Proc Natl Acad Sci, 93 (21), pp. 11919-11924

Citas:

---------- APA ----------
Defelipe, L.A., Do Porto, D.F., Pereira Ramos, P.I., Nicolás, M.F., Sosa, E., Radusky, L., Lanzarotti, E.,..., Marti, M.A. (2016) . A whole genome bioinformatic approach to determine potential latent phase specific targets in Mycobacterium tuberculosis. Tuberculosis, 97, 181-192.
http://dx.doi.org/10.1016/j.tube.2015.11.009
---------- CHICAGO ----------
Defelipe, L.A., Do Porto, D.F., Pereira Ramos, P.I., Nicolás, M.F., Sosa, E., Radusky, L., et al. "A whole genome bioinformatic approach to determine potential latent phase specific targets in Mycobacterium tuberculosis" . Tuberculosis 97 (2016) : 181-192.
http://dx.doi.org/10.1016/j.tube.2015.11.009
---------- MLA ----------
Defelipe, L.A., Do Porto, D.F., Pereira Ramos, P.I., Nicolás, M.F., Sosa, E., Radusky, L., et al. "A whole genome bioinformatic approach to determine potential latent phase specific targets in Mycobacterium tuberculosis" . Tuberculosis, vol. 97, 2016, pp. 181-192.
http://dx.doi.org/10.1016/j.tube.2015.11.009
---------- VANCOUVER ----------
Defelipe, L.A., Do Porto, D.F., Pereira Ramos, P.I., Nicolás, M.F., Sosa, E., Radusky, L., et al. A whole genome bioinformatic approach to determine potential latent phase specific targets in Mycobacterium tuberculosis. Tuberculosis. 2016;97:181-192.
http://dx.doi.org/10.1016/j.tube.2015.11.009