Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Nitroxyl (HNO) is a highly elusive and reactive molecule. Nitroxyl biological effects and pharmacological potential are becoming increasingly relevant. Mycobacterium tuberculosis infection needs new and more efficient drugs. Reactive Nitrogen and Oxygen Species (RNOS) are key compounds used by the immune system to fight intracellular infections, particularly Mycobacterium tuberculosis. In this context, we analyzed HNO potential to kill mycobacteria. We evaluated the viability and biological response of mycobacteria towards HNO releasing compounds. Our results show that HNO donors can affect mycobacterial growth, for both Mycobacterium smegmatis and Mycobacterium tuberculosis. The effect can be observed using a single dose or with successive additions of lower concentrations of the donor, mimicking continuous HNO exposure. When analyzing the effect of the simultaneous addition of sub-inhibitory concentrations of HNO with antibiotics commonly used for Mycobacterium tuberculosis infection treatment we observed: a positive effect on Rifampicin, Kanamycin and Delamanid activity; and a negative effect on Isoniazid and Ethambutol activity. Regarding a possible mechanism of action, based on the recently developed fluoromycobacteriophage assay, we propose that HNO acts by interfering with general mycobacterial physiological state. The results of this study positions HNO donors as potential candidates as new drugs for a new tuberculosis treatment. © 2018 Elsevier Ltd

Registro:

Documento: Artículo
Título:Evaluation of nitroxyl donors’ effect on mycobacteria
Autor:Galizia, J.; Acosta, M.P.; Urdániz, E.; Martí, M.A.; Piuri, M.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Palabras clave:Azanone; HNO; Mycobacteria; Nitric oxide; RNOS; Tuberculosis; amitrole; antimycobacterial agent; cysteine; delamanid; ethambutol; isoniazid; kanamycin; methanesulfohydroxamic acid; n acetyl s nitrosopenicillamine; nitric oxide donor; nitroxyl; rifampicin; unclassified drug; nitrogen oxide; nitroxyl; tuberculostatic agent; antibacterial activity; Article; bacterial growth; bacterial viability; bactericidal activity; colony forming unit; controlled study; drug effect; drug exposure; drug half life; drug mechanism; minimum inhibitory concentration; mycobacteriophage; Mycobacterium smegmatis; Mycobacterium tuberculosis; nonhuman; priority journal; tuberculosis; dose response; drug interaction; growth, development and aging; metabolism; microbial viability; Mycobacterium smegmatis; Mycobacterium tuberculosis; Antibiotics, Antitubercular; Antitubercular Agents; Dose-Response Relationship, Drug; Drug Interactions; Microbial Viability; Mycobacterium smegmatis; Mycobacterium tuberculosis; Nitrogen Oxides
Año:2018
Volumen:109
Página de inicio:35
Página de fin:40
DOI: http://dx.doi.org/10.1016/j.tube.2018.01.006
Título revista:Tuberculosis
Título revista abreviado:Tuberculosis
ISSN:14729792
CODEN:TUBEC
CAS:amitrole, 61-82-5; cysteine, 4371-52-2, 52-89-1, 52-90-4; delamanid, 681492-22-8; ethambutol, 10054-05-4, 1070-11-7, 3577-94-4, 74-55-5; isoniazid, 54-85-3, 62229-51-0, 65979-32-0; kanamycin, 11025-66-4, 61230-38-4, 8063-07-8; n acetyl s nitrosopenicillamine, 79032-48-7; rifampicin, 13292-46-1; nitrogen oxide, 11104-93-1; Antibiotics, Antitubercular; Antitubercular Agents; Nitrogen Oxides; nitroxyl
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14729792_v109_n_p35_Galizia

Referencias:

  • Eberhardt, M., Dux, M., Namer, B., Miljkovic, J., Cordasic, N., Will, C., H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway (2014) Nat Commun, 5, p. 4381
  • Shoman, M.E., Aly, O.M., Nitroxyl (HNO): a possible strategy for fighting cancer (2016) Curr Top Med Chem, 16, pp. 2464-2470
  • Doctorovich, F., Bikiel, D., Pellegrino, J., Suárez, S.A., Larsen, A., Martí, M.A., Nitroxyl (azanone) trapping by metalloporphyrins (2011) Coord Chem Rev, 255, pp. 2764-2784
  • DuMond, J.F., King, S.B., The chemistry of nitroxyl-releasing compounds (2011) Antioxidants Redox Signal, 14, pp. 1637-1648
  • Miranda, K.M., Katori, T., Torres De Holding, C.L., Thomas, L., Ridnour, L.A., McLendon, W.J., Comparison of the NO and HNO donating properties of diazeniumdiolates: primary amine adducts release HNO in vivo (2005) J Med Chem, 48, pp. 8220-8228
  • Irvine, J.C., Ritchie, R.H., Favaloro, J.L., Andrews, K.L., Widdop, R.E., Kemp-Harper, B.K., Nitroxyl (HNO): the Cinderella of the nitric oxide story (2008) Trends Pharmacol Sci, 29, pp. 601-608
  • Hamer, M., Suarez, S.A., Neuman, N.I., Alvarez, L., Muñoz, M., Marti, M.A., Discussing endogenous NO•/HNO interconversion aided by phenolic drugs and vitamins (2015) Inorg Chem, 54, pp. 9342-9350
  • Suarez, S.A., Neuman, N.I., Munoz, M., Alvarez, L., Bikiel, D.E., Brondino, C.D., Nitric oxide is reduced to HNO by proton-coupled nucleophilic attack by ascorbate, tyrosine, and other alcohols. A new route to HNO in biological media? (2015) J Am Chem Soc, 137, pp. 4720-4727
  • (2017), http://www.who.int/tb/publications/global_report/en/, WHO, Global tuberculosis report, (n.d.). (Accessed August 01); Koul, A., Arnoult, E., Lounis, N., Guillemont, J., Andries, K., The challenge of new drug discovery for tuberculosis (2011) Nature, 469, pp. 483-490
  • Yadav, R., Goldstein, S., Nasef, M.O., Lee, W., Samuni, U., Synergistic activity of acetohydroxamic acid on prokaryotes under oxidative stress: the role of reactive nitrogen species (2014) Free Radic Biol Med, 77, pp. 291-297
  • Nobre, L.S., Saraiva, L.M., Effect of combined oxidative and nitrosative stresses on Staphylococcus aureus transcriptome (2013) Appl Microbiol Biotechnol, 97, pp. 2563-2573
  • Mukherjee, T., Boshoff, H., Nitroimidazoles for the treatment of TB: past, present and future (2011) Future Med Chem, 3, pp. 1427-1454
  • Vilcheze, C., Hartman, T., Weinrick, B., Jacobs, W.R.J., Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction (2013) Nat Commun, 4, p. 1881
  • French, G.L., Bactericidal agents in the treatment of MRSA infections - the potential role of daptomycin (2006) J Antimicrob Chemother, 58, pp. 1107-1117
  • Pino, R.Z., Feelisch, M., Bioassay discrimination between nitric oxide (NO·) and nitroxyl (NO−) using L-cysteine (1994) Biochem Biophys Res Commun, 201, pp. 54-62
  • Urdaniz, E., Rondon, L., Marti, M.A., Hatfull, G.F., Piuri, M., Rapid whole-cell assay of antitubercular drugs using second-generation fluoromycobacteriophages (2016) Antimicrob Agents Chemother, 60, pp. 3253-3256
  • Piuri, M., Jacobs, W.R., Hatfull, G.F., Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis (2009) PLoS One, 4
  • Sambandamurthy, V.K., Jacobs, W.R., Live attenuated mutants of Mycobacterium tuberculosis as candidate vaccines against tuberculosis (2005) Microb Infect, 7, pp. 955-961
  • Rhee, K.Y., Erdjument-Bromage, H., Tempst, P., Nathan, C.F., S-nitroso proteome of Mycobacterium tuberculosis: enzymes of intermediary metabolism and antioxidant defense (2005) Proc Natl Acad Sci, 102, pp. 467-472
  • Cunningham-Bussel, A., Bange, F.C., Nathan, C.F., Nitrite impacts the survival of Mycobacterium tuberculosis in response to isoniazid and hydrogen peroxide (2013) Microbiologyopen, 2, pp. 901-911
  • Garbe, T.R., Hibler, N.S., Deretic, V., Response of Mycobacterium tuberculosis to reactive oxygen and nitrogen intermediates (1996) Mol Med, 2, pp. 134-142
  • Long, R., Light, B., Talbot, J.A., Mycobacteriocidal action of exogenous nitric oxide (1999) Antimicrob Agents Chemother, 43, pp. 403-405
  • Jackson, M.I., Fields, H.F., Lujan, T.S., Cantrell, M.M., Lin, J., Fukuto, J.M., The effects of nitroxyl (HNO) on H2O2 metabolism and possible mechanisms of HNO signaling (2013) Arch Biochem Biophys, 538, pp. 120-129
  • Newton, G.L., Buchmeier, N., Fahey, R.C., Biosynthesis and functions of mycothiol, the unique protective thiol of actinobacteria (2008) Microbiol Mol Biol Rev, 72, pp. 471-494

Citas:

---------- APA ----------
Galizia, J., Acosta, M.P., Urdániz, E., Martí, M.A. & Piuri, M. (2018) . Evaluation of nitroxyl donors’ effect on mycobacteria. Tuberculosis, 109, 35-40.
http://dx.doi.org/10.1016/j.tube.2018.01.006
---------- CHICAGO ----------
Galizia, J., Acosta, M.P., Urdániz, E., Martí, M.A., Piuri, M. "Evaluation of nitroxyl donors’ effect on mycobacteria" . Tuberculosis 109 (2018) : 35-40.
http://dx.doi.org/10.1016/j.tube.2018.01.006
---------- MLA ----------
Galizia, J., Acosta, M.P., Urdániz, E., Martí, M.A., Piuri, M. "Evaluation of nitroxyl donors’ effect on mycobacteria" . Tuberculosis, vol. 109, 2018, pp. 35-40.
http://dx.doi.org/10.1016/j.tube.2018.01.006
---------- VANCOUVER ----------
Galizia, J., Acosta, M.P., Urdániz, E., Martí, M.A., Piuri, M. Evaluation of nitroxyl donors’ effect on mycobacteria. Tuberculosis. 2018;109:35-40.
http://dx.doi.org/10.1016/j.tube.2018.01.006