Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background: Maize landraces from South America have traditionally been assigned to two main categories: Andean and Tropical Lowland germplasm. However, the genetic structure and affiliations of the lowland gene pools have been difficult to assess due to limited sampling and the lack of comparative analysis. Here, we examined SSR and Adh2 sequence variation in a diverse sample of maize landraces from lowland middle South America, and performed a comprehensive integrative analysis of population structure and diversity including already published data of archaeological and extant specimens from the Americas. Geographic distribution models were used to explore the relationship between environmental factors and the observed genetic structure. Results: Bayesian and multivariate analyses of population structure showed the existence of two previously overlooked lowland gene pools associated with Guaraní indigenous communities of middle South America. The singularity of this germplasm was also evidenced by the frequency distribution of microsatellite repeat motifs of the Adh2 locus and the distinct spatial pattern inferred from geographic distribution models. Conclusion: Our results challenge the prevailing view that lowland middle South America is just a contact zone between Andean and Tropical Lowland germplasm and highlight the occurrence of a unique, locally adapted gene pool. This information is relevant for the conservation and utilization of maize genetic resources, as well as for a better understanding of environment-genotype associations. © 2016 The Author(s).

Registro:

Documento: Artículo
Título:Dissecting maize diversity in lowland South America: Genetic structure and geographic distribution models
Autor:Bracco, M.; Cascales, J.; Hernández, J.C.; Poggio, L.; Gottlieb, A.M.; Lia, V.V.
Filiación:Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes y Costanera Norte s/n, 4to, Piso, Pabellón II, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Escuela de Ciencias Agrarias, Naturales y Ambientales, Av. Pte. Dr. Arturo Frondizi, Pergamino, Buenos Aires, 2650, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, Ciudad Autónoma de Buenos Aires, C1033AAJ, Argentina
Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
Instituto de Biotecnología, CICVyA, INTA, N. Repetto y De las Cabañas s/n 1686, Hurlingham, Buenos Aires, Argentina
Palabras clave:Genetic diversity; Geographic distribution models; Guaraní communities; Lowland South America; Maize landraces; microsatellite DNA; plant protein; Bayes theorem; classification; genetic variation; genetics; genotype; maize; phylogeny; South America; Bayes Theorem; Genetic Variation; Genotype; Microsatellite Repeats; Phylogeny; Plant Proteins; South America; Zea mays
Año:2016
Volumen:16
Número:1
DOI: http://dx.doi.org/10.1186/s12870-016-0874-5
Título revista:BMC Plant Biology
Título revista abreviado:BMC Plant Biol.
ISSN:14712229
CAS:Plant Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14712229_v16_n1_p_Bracco

Referencias:

  • Matsuoka, Y., Vigouroux, Y., Goodman, M.M., Sanchez, G.J., Buckler, E., Doebley, J., A single domestication for maize shown by multilocus microsatellite genotyping (2002) Proc Natl Acad Sci U S A, 99, pp. 6080-6084
  • Iriarte, J., Holst, I., Marozzi, O., Listopad, C., Alonso, E., Rinderknecht, A., Evidence for cultivar adoption and emerging complexity during the mid-Holocene in the La Plata basin (2004) Nature, 432, pp. 614-617
  • Ranere, A.J., Piperno, D.R., Holst, I., Dickau, R., Iriarte, J., The cultural and chronological context of early Holocene maize and squash domestication in the Central Balsas River Valley, Mexico (2009) Proc Natl Acad Sci U S A, 106, pp. 5014-5018
  • Grobman, A., Bonavia, D., Dillehay, T.D., Piperno, D.R., Iriarte, J., Holst, I., Preceramic maize from Paredones and Huaca Prieta, Peru (2012) Proc Natl Acad Sci U S A, 109, pp. 1755-1759
  • Blake, M., (2006) Dating the initial spread of Zea mays, pp. 55-72. , In: Staller J, Tikot R, Benz B, editors. Histories of Maize:multidisciplinary approaches to prehistory, linguistics, biogeography, domestication, and evolution of maize. London: Academic
  • McClintock, B., Kato, T.A., Blumenschein, A., (1981) Chromosome Constitution of the Races of Maize, Its Significance in the Interpretation of Relationships Between Races and Varieties in the Americas, , Chapingo: Colegio de Postgraduados
  • Freitas, F.O., Bendel, G., Allaby, R.G., Brown, T.A., DNA from primitive maize landraces and archaeological remains: implications for the domestication of maize and its expansion into South America (2003) J Archaeol Sci, 30, pp. 901-908
  • Vigouroux, Y., Glaubitz, J.C., Matsuoka, Y., Goodman, M.M., Sánchez, G.J., Doebley, J., Population structure and genetic diversity of New World maize races assessed by DNA microsatellites (2008) Am J Bot, 95, pp. 1240-1253
  • Goodman, M.M., Bird, R.M., The Races of maize IV: tentative grouping of 219 Latin American races (1977) Econ Bot, 31, pp. 204-221
  • Goodman, M.M., Brown, W.L., (1988) Races of corn, pp. 33-79. , In: Sprague GF, Dudley JW, editors. Corn and corn improvement. Madison: American Society of Agronomy
  • Tenaillon, M.I., Charcosset, A., A European perspective on maize history (2011) C R Biol, 334, pp. 221-228
  • Heerwaarden, J., Doebley, J., Briggs, W.H., Glaubitz, J.C., Goodman, M.M., Jesus Sanchez Gonzalez, J., Genetic signals of origin, spread, and introgression in a large sample of maize landraces (2011) Proc Natl Acad Sci U S A, 108, pp. 1088-1092
  • Mir, C., Zerjal, T., Combes, V., Dumas, F., Madur, D., Bedoya, C., Out of America: tracing the genetic footprints of the global diffusion of maize (2013) Theor Appl Genet, 126, pp. 2671-2682
  • Bracco, M., Lia, V.V., Hernández, J.C., Poggio, L., Gottlieb, A.M., Genetic diversity of maize landraces from lowland and highland agro-ecosystems of Southern South America: Implications for the conservation of native resources (2012) Ann Appl Biol, 160, pp. 308-321
  • Lia, V.V., Poggio, L., Confalonieri, V.A., Microsatellite variation in maize landraces from Northwestern Argentina: Genetic diversity, population structure and racial affiliations (2009) Theor Appl Genet, 119, pp. 1053-1067
  • Hufford, M.B., Martínez-Meyer, E., Gaut, B.S., Eguiarte, L.E., Tenaillon, M.I., Inferences from the historical distribution of wild and domesticated maize provide ecological and evolutionary insight (2012) PLoS One, 7
  • Ureta, C., Martínez-Meyer, E., Perales, H.R., Álvarez-Buylla, E.R., Projecting the effects of climate change on the distribution of maize races and their wild relatives in Mexico (2012) Glob Chang Biol, 18, pp. 1073-1082
  • Grimaldo Giraldo, CJ., Investigating the Evolutionary History of Maize in South America, , PhD thesis, University of Manchester, Manchester, UK
  • Bracco, M., Lia, V.V., Gottlieb, A.M., Cámara Hernández, J., Poggio, L., Genetic diversity in maize landraces from indigenous settlements of Northeastern Argentina (2009) Genetica, 135, pp. 39-49
  • Pritchard, J.K., Stephens, M., Donnelly, P., Inference of population structure using multilocus genotype data (2000) Genetics, 155, pp. 945-959
  • Waits, L.P., Luikart, G., Taberlet, P., Estimating the probability of identity among genotypes in natural populations: Cautions and guidelines (2001) Mol Ecol, 10, pp. 249-256
  • Peakall, R., Smouse, P.E., GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research (2006) Mol Ecol Notes, 6, pp. 288-295
  • Falush, D., Stephens, M., Pritchard, J.K., Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies (2003) Genetics, 164, pp. 1567-1587
  • Evanno, G., Regnaut, S., Goudet, J., Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study (2005) Mol Ecol, 14, pp. 2611-2620
  • Earl, D.A., Holdt, B.M., STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method (2012) Conserv Genet Resour, 4, pp. 359-361
  • Rosenberg, N.A., DISTRUCT: A program for the graphical display of population structure (2004) Mol Ecol Notes, 4, pp. 137-138
  • Nicholson, G., Smith, A.V., Jónsson, F., Assessing population differentiation and isolation from single-nucleotide polymorphism data (2002) J R Statist Soc B, 64, pp. 695-715
  • Jombart, T., Devillard, S., Balloux, F., Discriminant analysis of principal components: a new method for the analysis of genetically structured populations (2010) BMC Genet, 11, p. 94
  • Jombart, T., Adegenet: A R package for the multivariate analysis of genetic markers (2008) Bioinformatics, 24, pp. 1403-1405
  • Legendre, P., Legendre, L., (1998) Numerical ecology, , 2nd ed. Amsterdan: Elsevier
  • Mousadik, A., Petit, R., High level of genetic differentiation for allelic richness among populations of the argan tree endemic to Morocco (1996) Theor. Appl. Genet, 92 (7), pp. 832-839
  • Nei, M., (1987) Molecular Evolutionary Genetics, , Tempe: Arizona State University
  • Goudet, J., FSTAT: a computer program to calculate F-Statistics (2013) J Hered, 104, pp. 586-590
  • Szpiech, Z.A., Jakobsson, M., Rosenberg, N.A., ADZE: a rarefaction approach for counting alleles private to combinations of populations (2008) Bioinformatics, 24, pp. 2498-2504
  • Glaubitz, J.C., CONVERT: A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages (2004) Mol Ecol Notes, 4, pp. 309-310
  • Saitou, N., Nei, M., The neighbour-joining method: a new method for reconstructing phylogenetic trees (1987) Mol Biol Evo, 4, pp. 406-425
  • Felsenstein, J., Phylip: phylogeny inference package (version 3.2) (1989) Cladistics, 5, pp. 164-166
  • Liu, K., Muse, S.V., PowerMarker: an integrated analysis environment for genetic marker analysis (2005) Bioinformatics, 21, pp. 2128-2129
  • Rambaut, A., (2009) FigTree, a graphical viewer of phylogenetic trees, , http://tree.bio.ed.ac.uk/software/figtree/, Accessed 18 Nov 2015
  • Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., Primer3-new capabilities and interfaces (2012) Nucleic Acids Res, 40, pp. 1-12
  • Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symp Ser, 41, pp. 95-98
  • Goloubinoff, P., Pääbo, S., Wilson, A.C., Evolution of maize inferred from sequence diversity of an Adh2 gene segment from archaeological specimens (1993) Proc Natl Acad Sci U S A, 90, pp. 1997-2001
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M., Robledo, C.W., (2013) Infostat version 2013, , http://www.infostat.com.ar, Accessed 15 Oct 2013
  • Phillips, S.J., Anderson, R.P., Schapire, R.E., Maximum entropy modeling of species geographic distributions (2006) Ecol Modell, 190, pp. 231-259
  • Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J., A statistical explanation of MaxEnt for ecologists (2011) Divers Distrib, 17, pp. 43-57
  • Merow, C., Smith, M.J., Silander, J.A., A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter (2013) Ecography (Cop), 36, pp. 1058-1069
  • Scheldeman, X., Van, Z.M., (2010) Training Manual on Spatial Analysis of Plant Diversity and Distribution, , http://www.bioversityinternational.org/e-library/publications/detail/training-manual-on-spatial-analysis-of-plant-diversity-and-distribution, Rome: Bioversity International . Accessed 15 Nov 2015
  • Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., Very high resolution interpolated climate surfaces for global land areas (2005) Int J Climatol, 25, pp. 1965-1978
  • Phillips, S.J., Dudík, M., Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation (2008) Ecography (Cop), 31, pp. 161-175
  • Warren, D.L., Glor, R.E., Turelli, M., ENMTools: A toolbox for comparative studies of environmental niche models (2010) Ecography (Cop), 33, pp. 607-611
  • Warren, D.L., Seifert, S.N., Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria (2011) Ecol Appl, 21, pp. 335-342
  • Hanley, J.A., McNeil, B.J., The meaning and use of the area under a receiver operating characteristic (ROC) curve (1982) Radiology, 143, pp. 29-36
  • Hijmans, R.J., Guarino, L., Cruz, M., Rojas, E., Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS (2001) Plants Genet Resour Newsl, 127, pp. 15-19
  • Warren, D.L., Glor, R.E., Turelli, M., Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution (2008) Evolution, 62, pp. 2868-2883
  • Schoener, T.W., The Anolis lizards of Bimini: Resource partitioning in a complex fauna (1968) Ecology, 49, p. 704
  • Takuno, S., Ralph, P., Swarts, K., Elshire, R.J., Glaubitz, J.C., Buckler, E.S., Independent molecular basis of convergent Highland adaptation in maize (2015) Genetics
  • Gaston, K.J., Measuring geographic range sizes (1994) Ecography (Cop), 17, pp. 198-205
  • Paterniani, E., Goodman, M.M., (1977) Races of Maize in Brazil and Adjacent Areas, , Texcoco: Centro Internacional de Mejoramiento de Maiz y Trigo
  • Cámara Hernández, J., Miante Alzogaray, A.M., Bellón, R., Galmarini, A.J., (2012) Razas de maíz nativas de la Argentina, , Buenos Aires: Editorial Facultad de Agronomía, Universidad de Buenos Aires
  • Sánchez, J.J.G., Goodman, M.M., Stuber, C.W., Racial diversity of maize in Brazil and adjacent areas (2007) Maydica, 52, pp. 13-30

Citas:

---------- APA ----------
Bracco, M., Cascales, J., Hernández, J.C., Poggio, L., Gottlieb, A.M. & Lia, V.V. (2016) . Dissecting maize diversity in lowland South America: Genetic structure and geographic distribution models. BMC Plant Biology, 16(1).
http://dx.doi.org/10.1186/s12870-016-0874-5
---------- CHICAGO ----------
Bracco, M., Cascales, J., Hernández, J.C., Poggio, L., Gottlieb, A.M., Lia, V.V. "Dissecting maize diversity in lowland South America: Genetic structure and geographic distribution models" . BMC Plant Biology 16, no. 1 (2016).
http://dx.doi.org/10.1186/s12870-016-0874-5
---------- MLA ----------
Bracco, M., Cascales, J., Hernández, J.C., Poggio, L., Gottlieb, A.M., Lia, V.V. "Dissecting maize diversity in lowland South America: Genetic structure and geographic distribution models" . BMC Plant Biology, vol. 16, no. 1, 2016.
http://dx.doi.org/10.1186/s12870-016-0874-5
---------- VANCOUVER ----------
Bracco, M., Cascales, J., Hernández, J.C., Poggio, L., Gottlieb, A.M., Lia, V.V. Dissecting maize diversity in lowland South America: Genetic structure and geographic distribution models. BMC Plant Biol. 2016;16(1).
http://dx.doi.org/10.1186/s12870-016-0874-5