Artículo

García, A.N.; Ayub, N.D.; Fox, A.R.; Gómez, M.C.; Diéguez, M.J.; Pagano, E.M.; Berini, C.A.; Muschietti, J.P.; Soto, G. "Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia" (2014) BMC Plant Biology. 14(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background: The production of antimicrobial peptides is a common defense strategy of living cells against a wide range of pathogens. Plant snakin peptides inhibit bacterial and fungal growth at extremely low concentrations. However, little is known of their molecular and ecological characteristics, including origin, evolutionary equivalence, specific functions and activity against beneficial microbes. The aim of this study was to identify and characterize snakin-1 from alfalfa (MsSN1).Results: Phylogenetic analysis showed complete congruence between snakin-1 and plant trees. The antimicrobial activity of MsSN1 against bacterial and fungal pathogens of alfalfa was demonstrated in vitro and in vivo. Transgenic alfalfa overexpressing MsSN1 showed increased antimicrobial activity against virulent fungal strains. However, MsSN1 did not affect nitrogen-fixing bacterial strains only when these had an alfalfa origin.Conclusions: The results reported here suggest that snakin peptides have important and ancestral roles in land plant innate immunity. Our data indicate a coevolutionary process, in which alfalfa exerts a selection pressure for resistance to MsSN1 on rhizobial bacteria. The increased antimicrobial activity against virulent fungal strains without altering the nitrogen-fixing symbiosis observed in MsSN1-overexpressing alfalfa transgenic plants opens the way to the production of effective legume transgenic cultivars for biotic stress resistance. © 2014 García et al.; licensee BioMed Central Ltd.

Registro:

Documento: Artículo
Título:Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia
Autor:García, A.N.; Ayub, N.D.; Fox, A.R.; Gómez, M.C.; Diéguez, M.J.; Pagano, E.M.; Berini, C.A.; Muschietti, J.P.; Soto, G.
Filiación:Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar C25 (1712), Buenos Aires, Argentina
Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), UBA-CONICET, Paraguay 2155, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Uni., Pabellon II, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Hector Torres , (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
Palabras clave:Alfalfa; Antimicrobial peptides; Evolution; Innate immunity; Land plants; Snakin; Embryophyta; Medicago sativa; antimicrobial cationic peptide; vegetable protein; alfalfa; evolution; gene expression; genetics; immunology; metabolism; microbiology; physiology; plant immunity; Rhizobium; symbiosis; transgenic plant; Antimicrobial Cationic Peptides; Biological Evolution; Gene Expression; Medicago sativa; Plant Immunity; Plant Proteins; Plants, Genetically Modified; Rhizobium; Symbiosis
Año:2014
Volumen:14
Número:1
DOI: http://dx.doi.org/10.1186/s12870-014-0248-9
Título revista:BMC Plant Biology
Título revista abreviado:BMC Plant Biol.
ISSN:14712229
CAS:Antimicrobial Cationic Peptides; Plant Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14712229_v14_n1_p_Garcia

Referencias:

  • Volenec, J.J., Cunningham, S.M., Haagenson, D.M., Berg, W.K., Joern, B.C., Wiersma, D.W., Physiological genetics of alfalfa improvement: past failures, future prospects (2002) Field Crops Res, 75, pp. 97-110
  • Lopez-Solanilla, E., Garcia-Olmedo, F., Rodriguez-Palenzuela, P., Inactivation of the sapA to sapF locus of Erwinia chrysanthemi reveals common features in plant and animal bacterial pathogenesis (1998) Plant Cell, 10 (6), pp. 917-924. , 9634580
  • Segura, A., Moreno, M., Madueno, F., Molina, A., Garcia-Olmedo, F., Snakin-1, a peptide from potato that is active against plant pathogens (1999) Mol Plant Microbe Interact, 12 (1), pp. 16-23. , 9885189
  • Berrocal-Lobo, M., Segura, A., Moreno, M., Lopez, G., Garcia-Olmedo, F., Molina, A., Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection (2002) Plant Physiol, 128 (3), pp. 951-961. , 11891250
  • Kovalskaya, N., Hammond, R.W., Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins (2009) Protein Expr Purif, 63 (1), pp. 12-17. , 18824107
  • Rong, W., Qi, L., Wang, J., Du, L., Xu, H., Wang, A., Zhang, Z., Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat (2013) Funct Integr Genomics, 13 (3), pp. 403-409. , 23839728
  • Guzman-Rodriguez, J.J., Ibarra-Laclette, E., Herrera-Estrella, L., Ochoa-Zarzosa, A., Suarez-Rodriguez, L.M., Rodriguez-Zapata, L.C., Salgado-Garciglia, R., Lopez-Gomez, R., Analysis of expressed sequence tags (ESTs) from avocado seed (Persea americana var. drymifolia) reveals abundant expression of the gene encoding the antimicrobial peptide snakin (2013) Plant Physiol Biochem, 70, pp. 318-324. , 23811120
  • Meiyalaghan, S., Thomson, S.J., Fiers, M.W., Barrell, P.J., Latimer, J.M., Mohan, S., Jones, E.E., Jacobs, J.M., (2014) Structure and expression of GSL1 and GSL2 genes encoding gibberellin stimulated-like proteins in diploid and highly heterozygous tetraploid potato reveals their highly conserved and essential status.BMC Genomics, 15, p. 2
  • Mohan, S., Meiyalaghan, S., Latimer, J.M., Gatehouse, M.L., Monaghan, K.S., Vanga, B.R., Pitman, A.R., Jacobs, J.M., GSL2 over-expression confers resistance to Pectobacterium atrosepticum in potato (2014) Theor Appl Genet, 127 (3), pp. 677-689. , 24370960
  • Almasia, N.I., Bazzini, A.A., Hopp, H.E., Vazquez-Rovere, C., Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants (2008) Mol Plant Pathol, 9 (3), pp. 329-338. , 18705874
  • Balaji, V., Smart, C.D., Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum) (2012) Transgenic Res, 21 (1), pp. 23-37. , 21479554
  • Kovalskaya, N., Zhao, Y., Hammond, R.W., Antibacterial and antifungal activity of a snakin-defensin hybrid protein expressed in tobacco and potato plant (2011) Open Plant Sci J, 5, pp. 29-42
  • Balaji, V., Sessa, G., Smart, C.D., Silencing of host basal defense response-related gene expression increases susceptibility of Nicotiana benthamiana to Clavibacter michiganensis subsp. michiganensis (2011) Phytopathology, 101 (3), pp. 349-357. , 21062112
  • Nahirñak, V., Almasia, N.I., Fernandez, P.V., Hopp, H.E., Estevez, J.M., Carrari, F., Vazquez-Rovere, C., Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition (2012) Plant Physiol, 158 (1), pp. 252-263. , 22080603
  • Nahirñak, V., Almasia, N.I., Hopp, H.E., Vazquez-Rovere, C., Snakin/GASA proteins: involvement in hormone crosstalk and redox homeostasis (2012) Plant Signal Behav, 7 (8), pp. 1004-1008. , 22836500
  • Porto, W.F., Franco, O.L., Theoretical structural insights into the snakin/GASA family (2013) Peptides, 44, pp. 163-167. , 23578978
  • Howell, C.R., Stipanovic, R.D., Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens with an antibiotic produced by the bacterium (1979) Phytopathology, 69, pp. 480-482
  • Carelli, M., Gnocchi, S., Fancelli, S., Mengoni, A., Paffetti, D., Scotti, C., Bazzicalupo, M., Genetic diversity and dynamics of Sinorhizobium meliloti populations nodulating different alfalfa cultivars in Italian soils (2000) Appl Environ Microbiol, 66 (11), pp. 4785-4789. , 11055924
  • Selbitschka, W., Keller, M., Miethling-Graff, R., Dresing, U., Schwieger, F., Krahn, I., Homann, I., Tebbe, C.C., Long-term field release of bioluminescent Sinorhizobium meliloti strains to assess the influence of a recA mutation on the strains' survival (2006) Microb Ecol, 52 (3), pp. 583-595. , 16924432
  • Reeve, W., Chain, P., O'Hara, G., Ardley, J., Nandesena, K., Brau, L., Tiwari, R., Howieson, J., Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419 (2010) Stand Genomic Sci, 2 (1), pp. 77-86. , 21304680
  • Keyser, H.H., Bohlool, B.B., Hu, T.S., Weber, D.F., Fast-growing rhizobia isolated from root nodules of soybean (1982) Science, 215 (4540), pp. 1631-1632. , 17788491
  • Eardly, B.D., Hannaway, D.B., Bottomley, P.J., Characterization of Rhizobia from ineffective Alfalfa nodules: ability to nodulate bean plants [Phaseolus vulgaris (L.) Savi.] (1985) Appl Environ Microbiol, 50 (6), pp. 1422-1427. , 16346942
  • Segovia, L., Young, J.P., Martinez-Romero, E., Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov (1993) Int J Syst Bacteriol, 43 (2), pp. 374-377. , 8494746
  • Kaneko, T., Nakamura, Y., Sato, S., Asamizu, E., Kato, T., Sasamoto, S., Watanabe, A., Tabata, S., Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti (supplement) (2000) DNA Res, 7 (6), pp. 381-406. , 11214974
  • Mathis, J.N., Israel, D.W., Barbour, W.M., Jarvis, B.D., Elkan, G.H., Analysis of the symbiotic performance of bradyrhizobium japonicum USDA 110 and its derivative I-110 and discovery of a new mannitol-utilizing, nitrogen-fixing USDA 110 derivative (1986) Appl Environ Microbiol, 52 (1), pp. 75-80. , 16347117
  • Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J., Schilperoort, R.A., A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid (1983) Nature, 303 (5913), pp. 179-180
  • Setten, L., Soto, G., Mozzicafreddo, M., Fox, A.R., Lisi, C., Cuccioloni, M., Angeletti, M., Diaz-Paleo, A., (2013) Ayub ND: Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions.PLoS One, 8 (5), p. e63666
  • Ayub, N.D., Julia Pettinari, M., Mendez, B.S., Lopez, N.I., Impaired polyhydroxybutyrate biosynthesis from glucose in Pseudomonas sp. 14-3 is due to a defective beta-ketothiolase gene (2006) FEMS Microbiol Lett, 264 (1), pp. 125-131. , 17020558
  • Gleave, A.P., A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome (1992) Plant Mol Biol, 20 (6), pp. 1203-1207. , 1463857
  • Campanella, J.J., Bitincka, L., Smalley, J., (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences.BMC Bioinformatics, 4, p. 29
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol Biol Evol, 28 (10), pp. 2731-2739. , 21546353
  • Finn, R.D., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J.E., Gavin, O.L., Eddy, S.R., The Pfam protein families database (2010) Nucleic Acids Res, 38, pp. D211-D222. , 19920124, Database issue
  • Shen, H.B., Chou, K.C., Signal-3 L: a 3-layer approach for predicting signal peptides (2007) Biochem Biophys Res Commun, 363 (2), pp. 297-303. , 17880924
  • Moller, E.M., Bahnweg, G., Sandermann, H., Geiger, H.H., A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues (1992) Nucleic Acids Res, 20 (22), pp. 6115-6116. , 1461751
  • Ayub, N.D., Pettinari, M.J., Ruiz, J.A., Lopez, N.I., A polyhydroxybutyrate-producing Pseudomonas sp. isolated from Antarctic environments with high stress resistance (2004) Curr Microbiol, 49 (3), pp. 170-174. , 15386099
  • Beringer, J.E., R factor transfer in Rhizobium leguminosarum (1974) J Gen Microbiol, 84 (1), pp. 188-198. , 4612098
  • Shen, W.J, (1989) Forde BG: Efficient transformation of Agrobacterium spp. by high voltage electroporation.Nucleic Acids Res, 17 (20), p. 8385
  • D'Halluin, K., Botterman, J., De Greef, W., Engineering of herbicide-resistant Alfalfa and evaluation under field conditions (1990) Crop Sci, 30, pp. 866-871
  • Soto, G., Fox, R., Ayub, N., Alleva, K., Guaimas, F., Erijman, E.J., Mazzella, A., Muschietti, J., TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana (2010) Plant J, 64 (6), pp. 1038-1047. , 21143683
  • Sanchez, L., Weidmann, S., Arnould, C., Bernard, A.R., Gianinazzi, S., Gianinazzi-Pearson, V., Pseudomonas fluorescens and Glomus mosseae trigger DMI3-dependent activation of genes related to a signal transduction pathway in roots of Medicago truncatula (2005) Plant Physiol, 139 (2), pp. 1065-1077. , 16183836
  • Perez Di Giorgio, J., Soto, G., Alleva, K., Jozefkowicz, C., Amodeo, G., Muschietti, J.P., Ayub, N.D., Prediction of aquaporin function by integrating evolutionary and functional analyses (2014) J Membr Biol, 247 (2), pp. 107-125. , 24292667
  • Furukawa, T., Sakaguchi, N., Shimada, H., Two OsGASR genes, rice GAST homologue genes that are abundant in proliferating tissues, show different expression patterns in developing panicles (2006) Genes Genet Syst, 81, pp. 171-180. , 16905871
  • Roxrud, I., Lid, S.E., Fletcher, J.C., Schmidt, E.D., Opsahl-Sorteberg, H.G., GASA4, one of the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed development (2007) Plant Cell Physiol, 48 (3), pp. 471-483. , 17284469
  • Bennici, A., Origin and early evolution of land plants: Problems and considerations (2008) Commun Integr Biol, 1 (2), pp. 212-218. , 19513262
  • Choi, H.K., Kim, D., Uhm, T., Limpens, E., Lim, H., Mun, J.H., Kalo, P., Cook, D.R., A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa (2004) Genetics, 166 (3), pp. 1463-1502. , 15082563
  • Cook, D.R., Medicago truncatula-a model in the making! (1999) Curr Opin Plant Biol, 2 (4), pp. 301-304. , 10459004
  • McCann, M.C., Rogan, G.J., Fitzpatrick, S., Trujillo, W.A., Sorbet, R., Hartnell, G.F., Riodan, S.G., Nemeth, M.A., Glyphosate-tolerant alfalfa is compositionally equivalent to conventional alfalfa (Medicago sativa L.) (2006) J Agr Food Chem, 54 (19), pp. 7187-7192
  • Masoud, S.A., Zhu, Q., Lamb, C., Dixon, R.A., Constitutive expression of an inducible glucanase in alfalfa reduces disease severity caused by the oomycete pathogen Phytophthora megasperma f. sp medicaginis, but does not reduce disease severity of chitin-containing fungi (1996) Transgenic Res, 5, pp. 313-323
  • Hipskind, J.D., Paiva, N.L., Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis (2000) Mol Plant Microbe Interact, 13 (5), pp. 551-562. , 10796021
  • Gruenheid, S., Le Moual, H., Resistance to antimicrobial peptides in Gram-negative bacteria (2012) FEMS Microbiol Lett, 330 (2), pp. 81-89. , 22339775
  • Doyle, J.J., Phylogenetic perspectives on the origins of nodulation (2011) Mol Plant Microbe Interact, 24 (11), pp. 1289-1295. , 21995796
  • Jones, K.M., Kobayashi, H., Davies, B.W., Taga, M.E., Walker, G.C., How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model (2007) Nat Rev Microbiol, 5 (8), pp. 619-633. , 17632573

Citas:

---------- APA ----------
García, A.N., Ayub, N.D., Fox, A.R., Gómez, M.C., Diéguez, M.J., Pagano, E.M., Berini, C.A.,..., Soto, G. (2014) . Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC Plant Biology, 14(1).
http://dx.doi.org/10.1186/s12870-014-0248-9
---------- CHICAGO ----------
García, A.N., Ayub, N.D., Fox, A.R., Gómez, M.C., Diéguez, M.J., Pagano, E.M., et al. "Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia" . BMC Plant Biology 14, no. 1 (2014).
http://dx.doi.org/10.1186/s12870-014-0248-9
---------- MLA ----------
García, A.N., Ayub, N.D., Fox, A.R., Gómez, M.C., Diéguez, M.J., Pagano, E.M., et al. "Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia" . BMC Plant Biology, vol. 14, no. 1, 2014.
http://dx.doi.org/10.1186/s12870-014-0248-9
---------- VANCOUVER ----------
García, A.N., Ayub, N.D., Fox, A.R., Gómez, M.C., Diéguez, M.J., Pagano, E.M., et al. Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC Plant Biol. 2014;14(1).
http://dx.doi.org/10.1186/s12870-014-0248-9