Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background: Eukaryotic DNA methylation is one of the most studied epigenetic processes, as it results in a direct and heritable covalent modification triggered by external stimuli. In contrast to mammals, plant DNA methylation, which is stimulated by external cues exemplified by various abiotic types of stress, is often found not only at CG sites but also at CNG (N denoting A, C or T) and CNN (asymmetric) sites. A genome-wide analysis of DNA methylation in Arabidopsis has shown that CNN methylation is preferentially concentrated in transposon genes and non-coding repetitive elements. We are particularly interested in investigating the epigenetics of plant species with larger and more complex genomes than Arabidopsis, particularly with regards to the associated alterations elicited by abiotic stress.Results: We describe the existence of CNN-methylated epialleles that span Asr1, a non-transposon, protein-coding gene from tomato plants that lacks an orthologous counterpart in Arabidopsis. In addition, to test the hypothesis of a link between epigenetics modifications and the adaptation of crop plants to abiotic stress, we exhaustively explored the cytosine methylation status in leaf Asr1 DNA, a model gene in our system, resulting from water-deficit stress conditions imposed on tomato plants. We found that drought conditions brought about removal of methyl marks at approximately 75 of the 110 asymmetric (CNN) sites analysed, concomitantly with a decrease of the repressive H3K27me3 epigenetic mark and a large induction of expression at the RNA level. When pinpointing those sites, we observed that demethylation occurred mostly in the intronic region.Conclusions: These results demonstrate a novel genomic distribution of CNN methylation, namely in the transcribed region of a protein-coding, non-repetitive gene, and the changes in those epigenetic marks that are caused by water stress. These findings may represent a general mechanism for the acquisition of new epialleles in somatic cells, which are pivotal for regulating gene expression in plants. © 2011 González et al; licensee BioMed Central Ltd.

Registro:

Documento: Artículo
Título:Atypical epigenetic mark in an atypical location: Cytosine methylation at asymmetric (CNN) sites within the body of a non-repetitive tomato gene
Autor:González, R.M.; Ricardi, M.M.; Iusem, N.D.
Filiación:Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e IFIByNE-CONICET, Buenos Aires, Argentina
Palabras clave:Epigeneticsasymmetric methylationAsr1water stress; Tomato; Arabidopsis; Eukaryota; Lycopersicon esculentum; Mammalia; Asr1 protein, Lycopersicon esculentum; cytosine; plant DNA; vegetable protein; article; biosynthesis; dehydration; DNA methylation; gene expression regulation; genetic epigenesis; genetics; metabolism; methylation; tomato; Cytosine; Dehydration; DNA Methylation; DNA, Plant; Epigenesis, Genetic; Gene Expression Regulation, Plant; Lycopersicon esculentum; Methylation; Plant Proteins
Año:2011
Volumen:11
DOI: http://dx.doi.org/10.1186/1471-2229-11-94
Título revista:BMC Plant Biology
Título revista abreviado:BMC Plant Biol.
ISSN:14712229
CAS:cytosine, 71-30-7; Asr1 protein, Lycopersicon esculentum; Cytosine, 71-30-7; DNA, Plant; Plant Proteins
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_14712229_v11_n_p_Gonzalez.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14712229_v11_n_p_Gonzalez

Referencias:

  • Feng, S., Jacobsen, S.E., Reik, W., Epigenetic reprogramming in plant and animal development (2010) Science, 330, pp. 622-627. , 10.1126/science.1190614, 2989926, 21030646
  • Reinders, J., Paszkowski, J., Unlocking the Arabidopsis epigenome (2009) Epigenetics, 4, pp. 557-563. , 10.4161/epi.4.8.10347, 19934651
  • Zhang, M., Kimatu, J.N., Xu, K., Liu, B., DNA cytosine methylation in plant development (2010) J Genet Genomics, 37, pp. 1-12. , 10.1016/S1673-8527(09)60020-5, 20171573
  • Akimoto, K., Katakami, H., Kim, H.J., Ogawa, E., Sano, C.M., Wada, Y., Sano, H., Epigenetics inheritance in rice plants (2007) Ann Bot, 100, pp. 205-217. , 10.1093/aob/mcm110, 2735323, 17576658
  • Wang, X., Elling, A.A., Li, X., Li, N., Peng, Z., He, G., Sun, H., Deng, X.W., Genome-wide and organ-specific landscapes of epigenetics modifications and their relationships to mRNA and small RNA transcriptomes in maize (2009) Plant Cell, 21, pp. 1053-1069. , 10.1105/tpc.109.065714, 2685623, 19376930
  • Chen, M., Lv, S., Meng, Y., Epigenetic performers in plants (2010) Dev Growth Differ, 52, pp. 555-566. , 10.1111/j.1440-169X.2010.01192.x, 20646028
  • Meyer, P., DNA methylation systems and targets in plants FEBS Lett
  • Finnegan, E.J., Peacock, W.J., Dennis, E.S., Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development (1996) Proc Natl Acad Sci USA, 93, pp. 8449-8454. , 10.1073/pnas.93.16.8449, 38691, 8710891
  • Jackson, J.P., Lindroth, A.M., Cao, X., Jacobsen, S.E., Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase (2002) Nature, 416, pp. 556-560. , 10.1038/nature731, 11898023
  • Cao, X., Jacobsen, S.E., Role of the Arabidopsis DRM methyltransferases in the novo DNA methylation and gene silencing (2002) Curr Biol, 12, pp. 1138-1144. , 10.1016/S0960-9822(02)00925-9, 12121623
  • Zhang, X., The epigenetic landscape of plants (2008) Science, 320, pp. 489-492. , 10.1126/science.1153996, 18436779
  • Teyssier, E., Bernacchia, G., Maury, S., How Kit, A., Stammitti-Bert, L., Rolin, D., Gallusci, P., Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening (2008) Planta, 228, pp. 391-399. , 10.1007/s00425-008-0743-z, 18488247
  • Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., Covarrubias, A.A., The enigmatic LEA proteins and other hydrophilins (2008) Plant Physiol, 148, pp. 6-24. , 10.1104/pp.108.120725, 2528095, 18772351
  • Frankel, N., Carrari, F., Hasson, E., Iusem, N.D., Evolutionary history of the Asr gene family (2006) Gene, 378, pp. 74-83
  • Maskin, L., Gudesblat, G.E., Moreno, J.E., Carrari, F.O., Frankel, N., Sambade, A., Rossi, M.M., Iusem, N.D., Differential expression of the members of Asr gene family in tomato (Lycopersicon esculentum) (2001) Plant Sci, 161, pp. 739-746
  • Konrad, Z., Bar-Zvi, D., Synergism between the chaperone-like activity of the stress regulated ASR1 protein and the osmolyte glycine-betaine (2008) Planta, 227, pp. 1213-1219. , 10.1007/s00425-008-0693-5, 18270732
  • Maskin, L., Frankel, N., Gudesblat, G., Demergasso, M.J., Pietrasanta, L., Iusem, N.D., Dimerization and DNA-binding of ASR1, a small hydrophilic protein abundant in plant tissues suffering from water loss (2007) Biochem Biophys Res Commun, 352, pp. 831-835. , 10.1016/j.bbrc.2006.11.115, 17157822
  • Bermudez-Moretti, M., Maskin, L., Gudesblat, G., Correa-García, S., Iusem, N.D., Asr1, a stress-induced tomato protein, protect yeast from osmotic stress (2006) Physiol Plant, 127, pp. 111-118
  • Finnegan, E.J., Epialleles - a source of random variation in times of stress (2002) Curr Opin Plant Biol, 5, pp. 101-106. , 10.1016/S1369-5266(02)00233-9, 11856603
  • Boyko, A., Kovalchuk, I., Epigenetic control of plant stress response (2008) Environ Mol Mutagen, 49, pp. 61-72. , 10.1002/em.20347, 17948278
  • Chinnusamy, V., Zhu, J.K., Epigenetic regulation of stress responses in plants (2009) Curr Opin Plant Biol, 12, pp. 133-139. , 10.1016/j.pbi.2008.12.006, 19179104
  • Boyko, A., Blevins, T., Yao, Y., Golubov, A., Bilichak, A., IInytskyy, Y., Hollander, J., Kovalchuk, I., Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins (2010) PLos One, 5, pp. e9514. , 10.1371/journal.pone.0009514, 2831073, 20209086
  • Clark, S.J., Statham, A., Stirzaker, C., Molloy, P.L., Frommer, M., DNA methylation: bisulphite modification and analysis (2006) Nat Protoc, 1, pp. 2353-2364. , 10.1038/nprot.2006.324, 17406479
  • Feng, S., Jacobsen, S.E., Epigenetics modifications in plants: an evolutionary perspective (2011) Curr Opin Plant Biol, 14, pp. 179-186. , 10.1016/j.pbi.2010.12.002, 21233005
  • Berdasco, M., Alcázar, R., García-Ortiz, M.V., Ballestar, E., Fernández, A.F., Roldán-Arjona, T., Tiburcio, A.F., Fraga, M.F., Promoter DNA hypermethylation and gene repression in undifferenciated Arabidopsis cells (2008) PLoS One, 3, pp. e3306. , 10.1371/journal.pone.0003306, 2556100, 18827894
  • Lister, R., O'Malley, R.C., Tonti-Filippini, J., Gregory, B.D., Berry, C.C., Millar, A.H., Ecker, J.R., Highly integrated single-base resolution maps of the epigenome in Arabidopsis (2008) Cell, 133, pp. 523-536. , 10.1016/j.cell.2008.03.029, 2723732, 18423832
  • Shibuya, K., Fukushima, S., Takatsuji, H., RNA-directed DNA methylation induces transcriptional activation in plants (2009) Proc Natl Acad Sci USA, 106, pp. 1660-1665. , 10.1073/pnas.0809294106, 2629447, 19164525
  • Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.W.L., Chen, H., Henderson, I.R., Ecker, J.R., Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis (2006) Cell, 126, pp. 1189-1201. , 10.1016/j.cell.2006.08.003, 16949657
  • Henderson, I.R., Jacobsen, S.E., Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading (2008) Genes Dev, 22, pp. 1597-1606. , 10.1101/gad.1667808, 2428058, 18559476
  • Widman, N., Jacobsen, S.E., Pellegrini, M., Determining the conservation of DNA methylation in Arabidopsis (2009) Epigenetics, 4, pp. 119-124. , 10.4161/epi.4.2.8214, 19384058
  • Diéguez, M.J., Bellotto, M., Afsar, K., Mittelsten Scheid, O., Paszkowski, J., Methylation of cytosines in nonconventional methylation acceptor sites can contribute to reduced gene expression (1997) Mol Gen Genet, 253, pp. 581-588. , 10.1007/s004380050360, 9065691
  • Greenberg, M.V., Ausin, I., Chan, S.W., Cokus, S.J., Cuperus, J.T., Feng, S., Law, J.A., Jacobsen, S.E., Identification of genes required for de novo DNA methylation in Arabidopsis (2011) Epigenetics, 6, pp. 344-354. , 10.4161/epi.6.3.14242, 3092683, 21150311
  • Johnson, L.M., Bostick, M., Zhang, X., Kraft, E., Henderson, I., Callis, J., Jacobsen, S.E., The SRA methyl-cytosine-binding domain links DNA and histone methylation (2007) Curr Biol, 17, pp. 379-384. , 10.1016/j.cub.2007.01.009, 1850948, 17239600
  • Woo, H.R., Pontes, O., Pikaard, C.S., Richards, E.J., VIM1, a methylcitosine-binding protein required for centromeric heterocromatinization (2007) Genes Dev, 21, pp. 267-277. , 10.1101/gad.1512007, 1785122, 17242155
  • Johnson, L.M., Law, J.A., Khattar, A., Henderson, I.R., Jacobsen, S.E., SRA-domain proteins required for DRM2-mediated de novo DNA methylation (2008) PLoS Genet, 4, pp. e1000280. , 10.1371/journal.pgen.1000280, 2582956, 19043555
  • Vaughn, M.W., Tanurdzic, M., Lippman, Z., Jiang, H., Carrasquillo, R., Rabinowicz, P.D., Dedhia, N., Martienssen, R.A., Epigenetic natural variation in Arabidopsis thaliana (2007) PLoS Biol, 5, pp. e174. , 10.1371/journal.pbio.0050174, 1892575, 17579518
  • Woo, H.R., Richards, E.J., Natural variation in DNA methylation in ribosomal RNA genes of Arabidopsis thaliana (2008) BMC Plant Biol, 8, p. 92. , 10.1186/1471-2229-8-92, 2551617, 18783613
  • Miura, A., Nakamura, M., Inagaki, S., Kobayashi, A., Saze, H., Kakutani, T., An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites (2009) EMBO J, 28, pp. 1078-1086. , 10.1038/emboj.2009.59, 2653724, 19262562
  • Lindroth, A.M., Cao, X., Jackson, J.P., Zilberman, D., McCallum, C.M., Henikoff, S., Jacobsen, S.E., Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation (2001) Science, 292, pp. 2077-2080. , 10.1126/science.1059745, 11349138
  • Wang, W.S., Pan, Y.J., Zhao, X.Q., Dwivedi, D., Zhu, L.H., Ali, J., Fu, B.Y., Li, Z.K., Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.) (2011) J Exp Bot, 62, pp. 1951-1960. , 10.1093/jxb/erq391, 3060682, 21193578
  • Henderson, I.R., Jacobsen, S.E., Epigenetic inheritance in plants (2007) Nature, 447, pp. 418-424. , 10.1038/nature05917, 17522675
  • Gehring, M., Henikoff, S., DNA methylation dynamics in plant genomes (2007) Biochem Biophys Acta, 1769, pp. 276-286
  • Peralta, I.E., Spooner, D.M., Granule-bound starch syntase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. Section Lycopersicon [Mill.] Wettst. subsection Lycopersicon) (2001) Am J Bot, 88, pp. 1888-1902
  • Takamiya, T., Hosobuchi, S., Asai, K., Nakamura, E., Tomioka, K., Kawase, M., Kakutani, T., Okuizumi, H., Restriction landmark genome scanning method using isoschizomers (MspI/HpaII) for DNA methylation analysis (2006) Electrophoresis, 27, pp. 2846-2856. , 10.1002/elps.200500776, 16637018
  • Wojdacz, T.K., Hansen, L.L., Dobrovic, A., A new approach to primer design for the control of PCR bias in methylation studies (2008) BMC Res Notes, 1, p. 54. , 10.1186/1756-0500-1-54, 2525644, 18710507
  • Gruntman, E., Qi, Y., Slotkin, R.K., Roeder, T., Martienssen, R.A., Sachidanandam, R., Kismeth: Analyzer of plant methylation states through bisulfite sequencing (2008) BMC Bioinformatics, 9, p. 371. , 10.1186/1471-2105-9-371, 2553349, 18786255
  • Ngamphiw, C., Kulawonganunchai, S., Assawamakin, A., Jenwitheesuk, E., Tongsima, S., VarDetect: a nucleotide sequence variation exploratory tool (2008) BMC Bioinformatics, 9 (SUPPL 12), pp. S9. , 10.1186/1471-2105-9-S12-S9, 2638149, 19091032
  • Ricardi, M.M., González, R.M., Iusem, N.D., Protocol: fine-tuning of a Chromatin Immunoprecipitation (ChIP) protocol in tomato (2010) Plant Methods, 6, p. 11. , 10.1186/1746-4811-6-11, 2859366, 20380723

Citas:

---------- APA ----------
González, R.M., Ricardi, M.M. & Iusem, N.D. (2011) . Atypical epigenetic mark in an atypical location: Cytosine methylation at asymmetric (CNN) sites within the body of a non-repetitive tomato gene. BMC Plant Biology, 11.
http://dx.doi.org/10.1186/1471-2229-11-94
---------- CHICAGO ----------
González, R.M., Ricardi, M.M., Iusem, N.D. "Atypical epigenetic mark in an atypical location: Cytosine methylation at asymmetric (CNN) sites within the body of a non-repetitive tomato gene" . BMC Plant Biology 11 (2011).
http://dx.doi.org/10.1186/1471-2229-11-94
---------- MLA ----------
González, R.M., Ricardi, M.M., Iusem, N.D. "Atypical epigenetic mark in an atypical location: Cytosine methylation at asymmetric (CNN) sites within the body of a non-repetitive tomato gene" . BMC Plant Biology, vol. 11, 2011.
http://dx.doi.org/10.1186/1471-2229-11-94
---------- VANCOUVER ----------
González, R.M., Ricardi, M.M., Iusem, N.D. Atypical epigenetic mark in an atypical location: Cytosine methylation at asymmetric (CNN) sites within the body of a non-repetitive tomato gene. BMC Plant Biol. 2011;11.
http://dx.doi.org/10.1186/1471-2229-11-94