Artículo

Bagnato, C.; Prados, M.B.; Franchini, G.R.; Scaglia, N.; Miranda, S.E.; Beligni, M.V."Analysis of triglyceride synthesis unveils a green algal soluble diacylglycerol acyltransferase and provides clues to potential enzymatic components of the chloroplast pathway" (2017) BMC Genomics. 18(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background: Microalgal triglyceride (TAG) synthesis has attracted considerable attention. Particular emphasis has been put towards characterizing the algal homologs of the canonical rate-limiting enzymes, diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). Less work has been done to analyze homologs from a phylogenetic perspective. In this work, we used HMMER iterative profiling and phylogenetic and functional analyses to determine the number and sequence characteristics of algal DGAT and PDAT, as well as related sequences that constitute their corresponding superfamilies. We included most algae with available genomes, as well as representative eukaryotic and prokaryotic species. Results: Amongst our main findings, we identified a novel clade of DGAT1-like proteins exclusive to red algae and glaucophyta and a previously uncharacterized subclade of DGAT2 proteins with an unusual number of transmembrane segments. Our analysis also revealed the existence of a novel DGAT exclusive to green algae with moderate similarity to plant soluble DGAT3. The DGAT3 clade shares a most recent ancestor with a group of uncharacterized proteins from cyanobacteria. Subcellular targeting prediction suggests that most green algal DGAT3 proteins are imported to the chloroplast, evidencing that the green algal chloroplast might have a soluble pathway for the de novo synthesis of TAGs. Heterologous expression of C. reinhardtii DGAT3 produces an increase in the accumulation of TAG, as evidenced by thin layer chromatography. Conclusions: Our analysis contributes to advance in the knowledge of complex superfamilies involved in lipid metabolism and provides clues to possible enzymatic players of chloroplast TAG synthesis. © 2017 The Author(s).

Registro:

Documento: Artículo
Título:Analysis of triglyceride synthesis unveils a green algal soluble diacylglycerol acyltransferase and provides clues to potential enzymatic components of the chloroplast pathway
Autor:Bagnato, C.; Prados, M.B.; Franchini, G.R.; Scaglia, N.; Miranda, S.E.; Beligni, M.V.
Filiación:Instituto de Energía y Desarrollo Sustentable, Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, Av. Bustillo 9500, 8400S. C. de Bariloche, Río Negro, Argentina
Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP-CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120 s/n, La Plata, Argentina
Universidad de Buenos Aires, CONICET Instituto de Investigaciones Cardiológicas (ININCA), Laboratorio de Glico-Inmuno-Biología, Marcelo T. de Alvear 2270, C1122AAJ, Buenos Aires, Argentina
Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, Mar del Plata, Argentina
Palabras clave:Algae; Biodiesel production; Chloroplast; HMMER profiling; Neutral lipids; Protein phylogeny; Soluble acyltransferase; Triglyceride metabolism
Año:2017
Volumen:18
Número:1
DOI: http://dx.doi.org/10.1186/s12864-017-3602-0
Handle:http://hdl.handle.net/20.500.12110/paper_14712164_v18_n1_p_Bagnato
Título revista:BMC Genomics
Título revista abreviado:BMC Genomics
ISSN:14712164
CODEN:BGMEE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14712164_v18_n1_p_Bagnato

Referencias:

  • Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, A., Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances (2008) Plant J, 54, pp. 621-639
  • Han, S.-F., Jin, W.-B., Tu, R.-J., Wu, W.-M., Biofuel production from microalgae as feedstock: current status and potential (2015) Crit Rev Biotechnol, 35, pp. 255-268
  • Passell, H., Dhaliwal, H., Reno, M., Wu, B., Ben Amotz, A., Ivry, E., Gay, M., Ayer, N., Algae biodiesel life cycle assessment using current commercial data (2013) J Environ Manage, 129, pp. 103-111
  • Du, Z.-Y., Benning, C., Triacylglycerol accumulation in photosynthetic cells in plants and algae (2016) Subcell Biochem, 86, pp. 179-205
  • Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., Tredici, M.R., Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor (2009) Biotechnol Bioeng, 102, pp. 100-112
  • Benvenuti, G., Lamers, P.P., Breuer, G., Bosma, R., Cerar, A., Wijffels, R.H., Barbosa, M.J., Microalgal TAG production strategies: why batch beats repeated-batch (2016) Biotechnol Biofuels, 9, p. 64
  • Chiu, S.-Y., Kao, C.-Y., Tsai, M.-T., Ong, S.-C., Chen, C.-H., Lin, C.-S., Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration (2009) Bioresour Technol, 100, pp. 833-838
  • Simionato, D., Sforza, E., Corteggiani Carpinelli, E., Bertucco, A., Giacometti, G.M., Morosinotto, T., Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation (2011) Bioresour Technol, 102, pp. 6026-6032
  • Boyle, N.R., Page, M.D., Liu, B., Blaby, I.K., Casero, D., Kropat, J., Cokus, S.J., Karpowicz, S.J., Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas (2012) J Biol Chem, 287, pp. 15811-15825
  • Davidi, L., Levin, Y., Ben-Dor, S., Pick, U., Proteome analysis of cytoplasmatic and plastidic β-carotene lipid droplets in Dunaliella bardawil (2015) Plant Physiol, 167, pp. 60-79
  • Weng, L.-C., Pasaribu, B., Ping Lin, I., Tsai, C.-H., Chen, C.-S., Jiang, P.-L., Hastie, L.C., Belda, C.A., Nitrogen deprivation induces lipid droplet accumulation and alters fatty acid metabolism in symbiotic dinoflagellates isolated from Aiptasia pulchella (2014) Sci Rep, 4, pp. 41-49
  • Yang, D., Song, D., Kind, T., Ma, Y., Hoefkens, J., Fiehn, O., Li, Y., Lan, C., Lipidomic analysis of Chlamydomonas reinhardtii under nitrogen and sulfur deprivation (2015) PLoS One, 10
  • Adl, S.M., Simpson, A.G.B., Lane, C.E., Lukeš, J., Bass, D., Bowser, S.S., Brown, M.W., Hampl, V., The revised classification of eukaryotes (2012) J Eukaryot Microbiol, 59, pp. 429-493
  • Janse, I., Rijssel, M., Hall, P.-J., Gerwig, G.J., Gottshal, J., Prins, R.A., The storage glucan of Phaeocystis globosa (Prymnesiophyceae) cells (1996) J Phycol, 32, pp. 382-387
  • Koornhuyse, N., Libessart, N., Delrue, B., Zabawinski, C., Decq, A., Iglesias, A., Carton, A., Ball, S., Control of starch composition and structure through substrate supply in the monocellular alga Chlamydomonas reinhardtii (1996) J Biol Chem, 271, pp. 16281-16287
  • Bigogno, C., Khozin-Goldberg, I., Boussiba, S., Vonshak, A., Cohen, Z., Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid (2002) Phytochemistry, 60, pp. 497-503
  • Liu, B., Benning, C., Lipid metabolism in microalgae distinguishes itself (2013) Curr Opin Biotechnol, 24, pp. 300-309
  • Merchant, S.S., Kropat, J., Liu, B., Shaw, J., Warakanont, J., TAG, You're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation (2012) Curr Opin Biotechnol, 23, pp. 352-363
  • Bell, R.M., Coleman, R.A., Enzymes of glycerolipid synthesis in eukaryotes (1980) Annu Rev Biochem, 49, pp. 459-487
  • Yamashita, S., Hosaka, K., Taketo, M., Numa, S., Distribution of glycerolipid-synthesizing enzymes in the subfractions of rat liver microsomes (1973) FEBS Lett, 29, pp. 235-238
  • Shockey, J.M., Gidda, S.K., Chapital, D.C., Kuan, J.-C., Dhanoa, P.K., Bland, J.M., Rothstein, S.J., Dyer, J.M., Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum (2006) Plant Cell, 18, pp. 2294-2313
  • Cases, S., Smith, S.J., Zheng, Y.W., Myers, H.M., Lear, S.R., Sande, E., Novak, S., Lusis, A.J., Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis (1998) Proc Natl Acad Sci U S A, 95, pp. 13018-13023
  • Cases, S., Stone, S.J., Zhou, P., Yen, E., Tow, B., Lardizabal, K.D., Voelker, T., Farese, R.V., Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members (2001) J Biol Chem, 276, pp. 38870-38876
  • Rani, S.H., Krishna, T.H.A., Saha, S., Negi, A.S., Defective in Cuticular Ridges (DCR) of Arabidopsis thaliana, a gene associated with surface cutin formation, encodes a soluble diacylglycerol acyltransferase (2010) J Biol Chem, 285, pp. 38337-38347
  • Rani, S.H., Saha, S., Rajasekharan, R., A soluble diacylglycerol acyltransferase is involved in triacylglycerol biosynthesis in the oleaginous yeast Rhodotorula glutinis (2013) Microbiology, 159 (1), pp. 155-166
  • Durrett, T.P., McClosky, D.D., Tumaney, A.W., Elzinga, D.A., Ohlrogge, J., Pollard, M., A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds (2010) Proc Natl Acad Sci U S A, 107, pp. 9464-9469
  • Dahlqvist, A., Stahl, U., Lenman, M., Banas, A., Lee, M., Sandager, L., Ronne, H., Stymne, S., Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants (2000) Proc Natl Acad Sci U S A, 97, pp. 6487-6492
  • Ståhl, U., Carlsson, A.S., Lenman, M., Dahlqvist, A., Huang, B., Bana, W., Bana, A., Stymne, S., Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis (2004) Plant Physiol, 135, pp. 1324-1335
  • Cao, H., Structure-function analysis of diacylglycerol acyltransferase sequences from 70 organisms (2011) BMC Res Notes, 4, p. 249
  • Liu, Q., Siloto, R.M.P., Lehner, R., Stone, S.J., Weselake, R.J., Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology (2012) Prog Lipid Res, 51, pp. 350-377
  • Turchetto-Zolet, A.C., Maraschin, F.S., Morais, G.L., Cagliari, A., Andrade, C.M., Margis-Pinheiro, M., Margis, R., Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis (2011) BMC Evol Biol, 11, pp. 263-277
  • Wang, P., Wang, Z., Dou, Y., Zhang, X., Wang, M., Tian, X., Genome-wide identification and analysis of membrane-bound O-acyltransferase (MBOAT) gene family in plants (2013) Planta, 238, pp. 907-922
  • Pan, X., Peng, F.Y., Weselake, R.J., Genome-wide analysis of Phospholipid: Diacylglycerol Acyltransferase (PDAT) genes in plants reveals the eudicot-wide PDAT gene expansion and altered selective pressures acting on the core eudicot PDAT paralogs (2015) Plant Physiol, 167, pp. 887-904
  • Chen, J.E., Smith, A.G., A look at diacylglycerol acyltransferases (DGATs) in algae (2012) J Biotechnol, 162, pp. 28-39
  • Chen, C.-X., Sun, Z., Cao, H.-S., Fang, F.-L., Ouyang, L.-L., Zhou, Z.-G., Identification and characterization of three genes encoding acyl-CoA: diacylglycerol acyltransferase (DGAT) from the microalga Myrmecia incisa Reisigl (2015) Algal Res, 12, pp. 280-288
  • Skewes-Cox, P., Sharpton, T.J., Pollard, K.S., DeRisi, J.L., Profile hidden Markov models for the detection of viruses within metagenomic sequence data (2014) PLoS One, 9
  • Madera, M., Gough, J., A comparison of profile hidden Markov model procedures for remote homology detection (2002) Nucleic Acids Res, 30, pp. 4321-4328
  • Alam, I., Dress, A., Rehmsmeier, M., Fuellen, G., Fitch, W.M., Comparative homology agreement search: an effective combination of homology-search methods (2004) Proc Natl Acad Sci U S A, 101, pp. 13814-13819
  • Saha, S., Enugutti, B., Rajakumari, S., Rajasekharan, R., Cytosolic triacylglycerol biosynthetic pathway in oilseeds. molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase (2006) Plant Physiol, 141, pp. 1533-1543. , August
  • Cao, H., Shockey, J.M., Klasson, K.T., Chapital, D.C., Mason, C.B., Scheffler, B.E., Developmental regulation of diacylglycerol acyltransferase family gene expression in tung tree tissues (2013) PLoS One, 8
  • Banaś, A., Carlsson, A.S., Huang, B., Lenman, M., Bana, W., Lee, M., Noiriel, A., Stymne, S., Cellular sterol ester synthesis in plants is performed by an enzyme (phospholipid:sterol acyltransferase) different from the yeast and mammalian Acyl-CoA:sterol acyltransferases (2005) J Biol Chem, 280
  • Chen, G., Greer, M.S., Lager, I., Lindberg Yilmaz, J., Mietkiewska, E., Carlsson, A.S., Stymne, S., Weselake, R.J., Identification and characterization of an LCAT-like Arabidopsis thaliana gene encoding a novel phospholipase A (2012) FEBS Lett, 586, pp. 373-377
  • Peelman, F., Vinaimont, N., Verhee, A., Vanloo, B., Verschelde, J.L., Labeur, C., Seguret-Mace, S., Vandekerckhove, J., A proposed architecture for lecithin cholesterol acyl transferase (LCAT): identification of the catalytic triad and molecular modeling (1998) Protein Sci, 7, pp. 587-599
  • Peelman, F., Verschelde, J.L., Vanloo, B., Ampe, C., Labeur, C., Tavernier, J., Vandekerckhove, J., Rosseneu, M., Effects of natural mutations in lecithin:cholesterol acyltransferase on the enzyme structure and activity (1999) J Lipid Res, 40, pp. 59-69
  • Chang, T.Y., Chang, C.C., Lin, S., Yu, C., Li, B.L., Miyazaki, A., Roles of acyl-coenzyme A:cholesterol acyltransferase-1 and -2 (2001) Curr Opin Lipidol, 12, pp. 289-296
  • Yang, H., Bard, M., Bruner, D.A., Gleeson, A., Deckelbaum, R.J., Aljinovic, G., Pohl, T.M., Sturley, S.L., Sterol esterification in yeast: a two-gene process (1996) Science, 272, pp. 1353-1356
  • Hung, C.-H., Ho, M.-Y., Kanehara, K., Nakamura, Y., Functional study of diacylglycerol acyltransferase type 2 family in Chlamydomonas reinhardtii (2013) FEBS Lett, 587, pp. 2364-2370
  • Deng, X.D., Gu, B., Li, Y.J., Hu, X.W., Guo, J.C., Fei, X.W., The roles of acyl-CoA: diacylglycerol acyltransferase 2 genes in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii (2012) Mol Plant, 5, pp. 945-947
  • Iwai, M., Ikeda, K., Shimojima, M., Ohta, H., Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter (2014) Plant Biotechnol J, 12, pp. 808-819
  • Raux, E., Leech, H.K., Beck, R., Schubert, H.L., Santander, P.J., Roessner, C.A., Scott, A.I., Thermes, C., Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohaem and cobalamin in Bacillus megaterium (2003) Biochem J, 370 (2), pp. 505-516
  • Machray, G.C., Burch, L., Hedley, P.E., Davies, H., Waugh, R., Characterisation of a complementary DNA encoding a novel plant enzyme with sucrolytic activity (1994) FEBS Lett, 354, pp. 123-127
  • Appel, J., Schulz, R., Sequence analysis of an operon of a NAD(P)-reducing nickel hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 gives additional evidence for direct coupling of the enzyme to NAD(P)H-dehydrogenase (complex I) (1996) Biochim Biophys Acta, 1298, pp. 141-147
  • Takeuchi, K., Reue, K., Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis (2009) Am J Physiol Endocrinol Metab, 296, pp. E1195-E1209
  • Fan, J., Andre, C., Xu, C., A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii (2011) FEBS Lett, 585, pp. 1985-1991
  • Goodson, C., Roth, R., Wang, Z.T., Goodenough, U., Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost (2011) Eukaryot Cell, 10, pp. 1592-1606
  • Goold, H.D., Cuiné, S., Legeret, B., Liang, Y., Brugière, S., Auroy, P., Javot, H., Beisson, F., Saturating light induces sustained accumulation of oil in plastidal lipid droplets in Chlamydomonas reinhardtii (2016) Plant Physiol, 171, pp. 2406-2417
  • Kalscheuer, R., Steinbüchel, A., A novel bifunctional wax ester synthase/acyl-CoA:Diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1 (2003) J Biol Chem, 278, pp. 8075-8082
  • Kalscheuer, R., Stoveken, T., Luftmann, H., Malkus, U., Reichelt, R., Steinbuchel, A., Neutral lipid biosynthesis in engineered Escherichia coli: Jojoba oil-like wax esters and fatty acid butyl esters (2006) Appl Environ Microbiol, 72, pp. 1373-1379
  • Waltermann, M., Luftmann, H., Baumeister, D., Kalscheuer, R., Steinbuchel, A., Rhodococcus opacus strain PD630 as a new source of high-value single-cell oil? Isolation and characterization of triacylglycerols and other storage lipids (2000) Microbiology, 146, pp. 1143-1149
  • Newman, D.K., Kolter, R., A role for excreted quinones in extracellular electron transfer (2000) Nature, 405, pp. 94-97
  • Alvarez, H.M., Steinbüchel, A., Triacylglycerols in prokaryotic microorganisms (2002) Appl Microbiol Biotechnol, 60, pp. 367-376
  • Waltermann, M., Steinbuchel, A., Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots (2005) J Bacteriol, 187, pp. 3607-3619
  • Karpowicz, S.J., Prochnik, S.E., Grossman, A.R., Merchant, S.S., The GreenCut2 resource, a phylogenomically derived inventory of proteins specific to the plant lineage (2011) J Biol Chem, 286, pp. 21427-21439
  • Yeh, A.P., Chatelet, C., Soltis, S.M., Kuhn, P., Meyer, J., Rees, D.C., Structure of a thioredoxin-like [2Fe-2S] Ferredoxin from Aquifex aeolicus (2000) J Mol Biol, 300, pp. 587-595
  • Chatelet, C., Gaillard, J., Pétillot, Y., Louwagie, M., Meyer, J., A [2Fe-2S] protein from the hyperthermophilic bacterium Aquifex Aeolicus (1999) Biochem Biophys Res Commun, 261, pp. 885-889
  • Zu, Y., Di Bernardo, S., Yagi, T., Hirst, J., Redox properties of the [2Fe-2S] center in the 24 kDa (NQO2) Subunit of NADH:ubiquinone oxidoreductase (Complex I) (2002) Biochemistry, 41, pp. 10056-10069
  • Burgdorf, T., Linden, E., Bernhard, M., Yin, Q.Y., Back, J.W., Hartog, A.F., Muijsers, A.O., Friedrich, B., The soluble NAD + -Reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH (2005) J Bacteriol, 187, pp. 3122-3132
  • Goodenough, U., Blaby, I., Casero, D., Gallaher, S.D., Goodson, C., Johnson, S., Lee, J.-H., Roth, R., The path to triacylglyceride obesity in the sta6 strain of Chlamydomonas reinhardtii (2014) Eukaryot Cell, 13, pp. 591-613
  • Terashima, M., Specht, M., Hippler, M., The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features (2011) Curr Genet, 57, pp. 151-168
  • Yoon, K., Han, D., Li, Y., Sommerfeld, M., Hu, Q., Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii (2012) Plant Cell, 24, pp. 3708-3724
  • Davidi, L., Shimoni, E., Khozin-Goldberg, I., Zamir, A., Pick, U., Origin of beta-carotene-rich plastoglobuli in Dunaliella bardawil (2014) Plant Physiol, 164, pp. 2139-2156
  • Sakaki, T., Kondo, N., Yamada, M., Pathway for the synthesis of triacylglycerols from monogalactosyldiacylglycerols in ozone-fumigated spinach leaves (1990) Plant Physiol, 94, pp. 773-780
  • Kaup, M.T., Froese, C.D., Thompson, J.E., A role for diacylglycerol acyltransferase during leaf senescence (2002) Plant Physiol, 129, pp. 1616-1626
  • Martin, B.A., Wilson, R.F., Subcellular localization of triacylglycerol synthesis in spinach leaves (1984) Lipids, 19, pp. 117-121
  • Li, X., Moellering, E.R., Liu, B., Johnny, C., Fedewa, M., Sears, B.B., Kuo, M.-H., Benning, C., A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii (2012) Plant Cell, 24, pp. 4670-4686
  • UniProt: a hub for protein information (2014) Nucleic Acids Res, 43, pp. D204-D212. , Database issue
  • Eddy, S.R., Profile hidden Markov models (1998) Bioinformatics, 14, pp. 755-763
  • Katoh, K., Misawa, K., Kuma, K., Miyata, T., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform (2002) Nucleic Acids Res, 30, pp. 3059-3066
  • Larsson, A., AliView: A fast and lightweight alignment viewer and editor for large datasets (2014) Bioinformatics, 30, pp. 3276-3278
  • Nicholas, K., Nicholas, H., Deerfield, D., GeneDoc: analysis and visualization of genetic variation (1997) EMBnet News, 4, p. 14
  • Fu, L., Niu, B., Zhu, Z., Wu, S., Li, W., CD-HIT: accelerated for clustering the next-generation sequencing data (2012) Bioinformatics, 28, pp. 3150-3152
  • Criscuolo, A., Gribaldo, S., BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments (2010) BMC Evol Biol, 10, p. 210
  • Crooks, G.E., Hon, G., Chandonia, J.-M., Brenner, S.E., WebLogo: a sequence logo generator (2004) Genome Res, 14, pp. 1188-1190
  • Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. (2010) Syst Biol, 59, pp. 307-321
  • Minh, B.Q., Nguyen, M.A.T., Haeseler, A., Ultrafast approximation for phylogenetic bootstrap (2013) Mol Biol Evol, 30, pp. 1188-1195
  • Trifinopoulos, J., Nguyen, L.-T., Haeseler, A., Minh, B.Q., W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis (2016) Nucleic Acids Res, 44, pp. W232-W235
  • Ronquist, F., Teslenko, M., Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Huelsenbeck, J.P., Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space (2012) Syst Biol, 61, pp. 539-542
  • Nylander, J.A.A., Wilgenbusch, J.C., Warren, D.L., Swofford, D.L., AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics (2008) Bioinformatics, 24, pp. 581-583
  • Huson, D.H., Scornavacca, C., Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks (2012) Syst Biol, 61, pp. 1061-1067
  • Letunic, I., Bork, P., Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees (2016) Nucleic Acids Res, 44, pp. W242-W245
  • Tardif, M., Atteia, A., Specht, M., Cogne, G., Rolland, N., Brugière, S., Hippler, M., Peltier, G., PredAlgo: a new subcellular localization prediction tool dedicated to green algae (2012) Mol Biol Evol, 29, pp. 3625-3639
  • Gschloessl, B., Guermeur, Y., Cock, J.M., HECTAR: a method to predict subcellular targeting in heterokonts (2008) BMC Bioinformatics, 9, p. 393
  • Jiroutová, K., Horák, A., Bowler, C., Oborník, M., Tryptophan biosynthesis in stramenopiles: eukaryotic winners in the diatom complex chloroplast (2007) J Mol Evol, 65, pp. 496-511
  • Beligni, M.V., Bagnato, C., Prados, M.B., Bondino, H., Laxalt, A.M., Munnik, T., Have, A., The diversity of algal phospholipase D homologs revealed by biocomputational analysis (2015) J Phycol, 51, pp. 943-962
  • Emanuelsson, O., Brunak, S., Heijne, G., Nielsen, H., Locating proteins in the cell using TargetP, SignalP and related tools (2007) Nat Protoc, 2, pp. 953-971
  • Kelley, H., The Phyre2 web portal for protein modelling, prediction, and analysis (2015) Nat Protoc, 10, pp. 845-858
  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., Zhang, Y., The I-TASSER Suite: protein structure and function prediction (2015) Nat Methods, 12, pp. 7-8
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A., Protein identification and analysis tools on the ExPASy server (2005) The proteomics protocols handbook, pp. 571-607. , In: Walker JM, editor . Totowa: Humana Press Inc;
  • Kyte, J., Doolittle, R.F., A simple method for displaying the hydropathic character of a protein (1982) J Mol Biol, 157, pp. 105-132
  • Krogh, A., Larsson, B., Heijne, G., Sonnhammer, E.L., Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes (2001) J Mol Biol, 305, pp. 567-580

Citas:

---------- APA ----------
Bagnato, C., Prados, M.B., Franchini, G.R., Scaglia, N., Miranda, S.E. & Beligni, M.V. (2017) . Analysis of triglyceride synthesis unveils a green algal soluble diacylglycerol acyltransferase and provides clues to potential enzymatic components of the chloroplast pathway. BMC Genomics, 18(1).
http://dx.doi.org/10.1186/s12864-017-3602-0
---------- CHICAGO ----------
Bagnato, C., Prados, M.B., Franchini, G.R., Scaglia, N., Miranda, S.E., Beligni, M.V. "Analysis of triglyceride synthesis unveils a green algal soluble diacylglycerol acyltransferase and provides clues to potential enzymatic components of the chloroplast pathway" . BMC Genomics 18, no. 1 (2017).
http://dx.doi.org/10.1186/s12864-017-3602-0
---------- MLA ----------
Bagnato, C., Prados, M.B., Franchini, G.R., Scaglia, N., Miranda, S.E., Beligni, M.V. "Analysis of triglyceride synthesis unveils a green algal soluble diacylglycerol acyltransferase and provides clues to potential enzymatic components of the chloroplast pathway" . BMC Genomics, vol. 18, no. 1, 2017.
http://dx.doi.org/10.1186/s12864-017-3602-0
---------- VANCOUVER ----------
Bagnato, C., Prados, M.B., Franchini, G.R., Scaglia, N., Miranda, S.E., Beligni, M.V. Analysis of triglyceride synthesis unveils a green algal soluble diacylglycerol acyltransferase and provides clues to potential enzymatic components of the chloroplast pathway. BMC Genomics. 2017;18(1).
http://dx.doi.org/10.1186/s12864-017-3602-0