Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background. Understanding the genetic architecture of ecologically relevant adaptive traits requires the contribution of developmental and evolutionary biology. The time to reach the age of reproduction is a complex life history trait commonly known as developmental time. In particular, in holometabolous insects that occupy ephemeral habitats, like fruit flies, the impact of developmental time on fitness is further exaggerated. The present work is one of the first systematic studies of the genetic basis of developmental time, in which we also evaluate the impact of environmental variation on the expression of the trait. Results. We analyzed 179 co-isogenic single P[GT1]-element insertion lines of Drosophila melanogaster to identify novel genes affecting developmental time in flies reared at 25°C. Sixty percent of the lines showed a heterochronic phenotype, suggesting that a large number of genes affect this trait. Mutant lines for the genes Merlin and Karl showed the most extreme phenotypes exhibiting a developmental time reduction and increase, respectively, of over 2 days and 4 days relative to the control (a co-isogenic P-element insertion free line). In addition, a subset of 42 lines selected at random from the initial set of 179 lines was screened at 17°C. Interestingly, the gene-by-environment interaction accounted for 52% of total phenotypic variance. Plastic reaction norms were found for a large number of developmental time candidate genes. Conclusion. We identified components of several integrated time-dependent pathways affecting egg-to-adult developmental time in Drosophila. At the same time, we also show that many heterochronic phenotypes may arise from changes in genes involved in several developmental mechanisms that do not explicitly control the timing of specific events. We also demonstrate that many developmental time genes have pleiotropic effects on several adult traits and that the action of most of them is sensitive to temperature during development. Taken together, our results stress the need to take into account the effect of environmental variation and the dynamics of gene interactions on the genetic architecture of this complex life-history trait. © 2008 Mensch et al; licensee BioMed Central Ltd.

Registro:

Documento: Artículo
Título:Identifying candidate genes affecting developmental time in Drosophila melanogaster: Pervasive pleiotropy and gene-by-environment interaction
Autor:Mensch, J.; Lavagnino, N.; Carreira, V.P.; Massaldi, A.; Hasson, E.; Fanara, J.J.
Filiación:Departamento de Ecología, Genética Y Evolución, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Argentina
Palabras clave:article; development; Drosophila melanogaster; gene; gene identification; gene insertion; gene interaction; genetic trait; genetic variability; genotype phenotype correlation; karl gene; merlin gene; mutant; nonhuman; pleiotropy; analysis of variance; animal; developmental gene; environment; female; gene; gene expression regulation; genetics; growth, development and aging; male; phenotype; temperature; time; Drosophila melanogaster; Hexapoda; Drosophila protein; merlin; merlin, Drosophila; Analysis of Variance; Animals; Drosophila melanogaster; Drosophila Proteins; Environment; Female; Gene Expression Regulation, Developmental; Genes, Developmental; Genes, Insect; Male; Mutagenesis, Insertional; Neurofibromin 2; Phenotype; Temperature; Time Factors
Año:2008
Volumen:8
DOI: http://dx.doi.org/10.1186/1471-213X-8-78
Título revista:BMC Developmental Biology
Título revista abreviado:BMC Dev. Biol.
ISSN:1471213X
CAS:Drosophila Proteins; merlin, Drosophila; Neurofibromin 2
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_1471213X_v8_n_p_Mensch.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1471213X_v8_n_p_Mensch

Referencias:

  • Wallace, A., The emerging conceptual framework of evolutionary developmental biology (2002) Nature, 415, pp. 757-764. , 11845200
  • Reed, R.D., Chen, P.H., Nijhout, F.H., Cryptic variation in butterfly eyespot development: The importance of sample size in gene expression studies (2007) Evol Dev, 9, pp. 2-9. , 17227362
  • Stearns, S.C., (1992) The Evolution of Life Histories, , Oxford University Press
  • Gould, S.J., (1977) Ontogeny and Phylogeny, , Harvard University Press
  • Smith, K.K., Time's arrow: Heterochrony and the evolution of development (2003) Int J Dev Biol, 47, pp. 613-621. , 14756337
  • Carrol, S., (2005) Endless Forms Most Beautiful, , WW Norton & Company
  • Pires-Dasilva, A., Sommer, R.J., The evolution of signalling pathways in animal development (2003) Nat Rev Genet, 4, pp. 39-49. , 10.1038/nrg977. 12509752
  • Cortese, M.D., Norry, F.M., Piccinali, R., Hasson, E., Direct and correlated responses to artificial selection on developmental time and wing length in Drosophila buzzatii (2002) Evolution, 56, pp. 2541-2547. , 12583594
  • Fanara, J.J., Folguera, G., Iriarte, P.F., Mensch, J., Hasson, E., Genotype by environment interactions in viability and developmental time in populations of cactophilic Drosophila (2006) J Evol Biol, 19, pp. 900-908. , 10.1111/j.1420-9101.2006.01084.x. 16674586
  • Nunney, L., The response to selection for fast larval development in Drosophila melanogaster and its effect on adult weight: An example of a fitness trade-off (1996) Evolution, 50, pp. 1193-1204. , 10.2307/2410660
  • Zwaan, B.J., Bijsma, R., Hoekstra, R.F., Artificial selection for development time in Drosophila melanogaster in relation to the evolution of aging: Direct and correlated responses (1995) Evolution, 49, pp. 635-648. , 10.2307/2410317
  • Chippindale, A.K., Alipaz, J.A., Chen, H., Rose, M., Experimental evolution of accelerated development in Drosophila. 1. Developmental speed and larval survival (1997) Evolution, 51, pp. 1536-1551. , 10.2307/2411206
  • Prasad, N.G., Shakarad, M., Anitha, D., Rajamani, M., Joshi, A., Correlated responses to selection for faster development and early reproduction in Drosophila: The evolution of larval traits (2001) Evolution, 55, pp. 1363-1372. , 11525460
  • Chippindale, A.K., Alipaz, J.A., Rose, M.R., Experimental evolution of accelerated development in Drosophila. 2. Adult fitness and the fast development syndrome (2004) Methuselah Flies: A Case Study in the Evolution of Aging, pp. 413-435. , Singapore: World Scientific Rose MR, Passananti HB, Matos M
  • MacKay, T.F.C., The genetic architecture of quantitative traits: Lessons from Drosophila (2004) Curr Opin Genet Dev, 14, pp. 253-257. , 10.1016/j.gde.2004.04.003. 15172667
  • Alonso, J.M., Ecker, J.R., Moving forward in reverse: Genetic technologies to enable genome-wide phenomic screens in Arabidopsis (2006) Nat Rev Genet, 7, pp. 524-536. , 10.1038/nrg1893. 16755288
  • Sambandan, D., Yamamoto, A., Fanara, J.J., MacKay, T.F., Anholt, R., Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster (2006) Genetics, 174, pp. 1349-1363. , 17028343. 10.1534/genetics.106.060574
  • West-Eberhard, M.J., (2003) Developmental Plasticity and Evolution, , Oxford University Press
  • Schlichting, C., Pigliucci, M., (1998) Phenotypic Evolution: A Reaction Norm Perspective, , Sinauer Associates
  • Fordyce, J.A., The evolutionary consequences of ecological interactions mediated through phenotypic plasticity (2006) J Exp Biol, 209, pp. 2377-2383. , 10.1242/jeb.02271. 16731814
  • MacKay, T.F.C., Anholt, R., Ain't misbehavin'? Genotype-environment interactions and the genetics of behavior (2007) Trends Genet, 23, pp. 311-314. , 10.1016/j.tig.2007.03.013. 17418441
  • Davidowitz, G., Nijhout, F., The physiological basis of reaction norms: The interaction among growth rate, the duration of growth and body size (2004) Integr Comp Biol, 44, pp. 443-449. , 10.1093/icb/44.6.443
  • Angilletta, M., Steury, T., Sears, M., Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life-history puzzled (2004) Integr Comp Biol, 44, pp. 498-509. , 10.1093/icb/44.6.498
  • Trotta, V., Calboli, F.C., Ziosi, M., Guerra, D., Pezzoli, M.C., David, J.R., Cavicchi, S., Thermal plasticity in Drosophila melanogaster: A comparison of geographic populations (2006) BMC Evol Biol, 6, p. 67. , 16942614. 10.1186/1471-2148-6-67
  • Hariharan, I.K., Bilder, D., Regulation of imaginal disc growth by tumor-suppressor genes in Drosophila (2006) Annu Rev Genet, 40, pp. 335-361. , 10.1146/annurev.genet.39.073003.100738. 16872256
  • Smoller, D., Friedel, C., Schmid, A., Bettler, D., Lam, L., Yedvobnick, B., The Drosophila neurogenic locus mastermind encodes a nuclear protein unusually rich in amino acid homopolymers (1990) Genes Dev, 4, pp. 1688-1700. , 10.1101/gad.4.10.1688. 1701150
  • Artavanis-Tsakonas, S., Rand, M.D., Lake, R.J., Notch signaling: Cell fate control and signal integration in development (1999) Science, 284, pp. 770-776. , 10.1126/science.284.5415.770. 10221902
  • Helms, W., Lee, H., Ammerman, M., Parks, A.L., Muskavitch, M.A., Yedvobnick, B., Engineered truncations in the Drosophila mastermind protein disrupt Notch pathway function (1999) Dev Biol, 215, pp. 358-374. , 10.1006/dbio.1999.9477. 10545243
  • Petcherski, A.G., Kimble, J., Mastermind is a putative activator for Notch (2000) Curr Biol, 10, pp. 471-473. , 10.1016/S0960-9822(00)00577-7. 10801423
  • Fryer, C.F., Lamar, E., Turbachova, I., Kintner, C., Jones, K.A., Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex (2002) Genes Dev, 16, pp. 1397-1411. , 12050117. 10.1101/gad.991602
  • Lai, E.C., Notch signalling: Control of cell communication and cell fate (2004) Development, 131, pp. 965-973. , 10.1242/dev.01074. 14973298
  • Bray, S.J., Notch signalling: A simple pathway becomes complex (2006) Nat Rev Mol Cell Biol, 7, pp. 678-689. , 10.1038/nrm2009. 16921404
  • Oyama, T., Harigaya, K., Muradil, A., Hozumi, K., Habu, S., Oguro, H., Iwama, A., Kitagawa, M., Mastermind-1 is required for Notch signal-dependent steps in lymphocyte development in vivo (2007) Proc Natl Acad Sci USA, 104, pp. 9764-9769. , 17535917. 10.1073/pnas.0700240104
  • Chan, S.M., Weng, A.P., Tibshirani, R., Aster, J.C., Utz, P.J., Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia (2007) Blood, 110, pp. 278-286. , 17363738. 10.1182/blood-2006-08-039883
  • Garg, V., Muth, A.N., Ransom, J.F., Schluterman, M.K., Barnes, R., King, I.N., Grossfeld, P.D., Srivastava, D., Mutations in NOTCH1 cause aortic valve disease (2005) Nature, 437, pp. 270-274. , 10.1038/nature03940. 16025100
  • Hamaratoglu, F., Willecke, M., Kango-Singh, M., Nolo, R., Hyun, E., Tao, C., Jafar-Nejad, H., Halder, G., The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis (2006) Nat Cell Biol, 8, pp. 27-36. , 10.1038/ncb1339. 16341207
  • Okada, T., You, L., Giancotti, F., Shedding light on Merlin's wizardry (2007) Trends Cell Biol, 17, pp. 222-229. , 10.1016/j.tcb.2007.03.006. 17442573
  • McClatchey, A.I., Giovannini, M., Membrane organization and tumorigenesis: The NF2 tumor suppressor, Merlin (2005) Genes Dev, 19, pp. 2265-2277. , 10.1101/gad.1335605. 16204178
  • Jünger, M.A., Rintelen, F., Stocker, H., Wasserman, J.D., Végh, M., Radimerski, T., Greenberg, M.E., Hafen, E., The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling (2003) J Biol, 2, p. 20. , 12908874. 10.1186/1475-4924-2-20
  • Puig, O., Marr, M.T., Ruhf, M.L., Tjian, R., Control of cell number by Drosophila FOXO: Downstream and feedback regulation of the insulin receptor pathway (2003) Genes Dev, 17, pp. 2006-2020. , 12893776. 10.1101/gad.1098703
  • Shingleton, A.W., Das, J., Vinicius, L., Stern, D.L., The temporal requirements for insulin signaling during development in Drosophila (2005) Plos Biol, 3, p. 289. , 16086608. 10.1371/journal.pbio.0030289
  • Nijhout, H.F., The control of growth (2003) Development, 130, pp. 5863-5867. , 10.1242/dev.00902. 14597569
  • Caldwell, P.E., Walkiewicz, M., Stern, M., Ras activity in the Drosophila prothoracic gland regulates body size and developmental rate via ecdysone release (2005) Curr Biol, 15, pp. 1785-1795. , 10.1016/j.cub.2005.09.011. 16182526
  • Mirth, C., Truman, J.W., Riddiford, L.M., The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster (2005) Curr Biol, 15, pp. 1796-1807. , 10.1016/j.cub.2005.09.017. 16182527
  • Colombani, J., Bianchini, L., Layalle, S., Pondeville, E., Dauphin-Villemant, C., Antoniewski, C., Carré, C., Léopold, P., Antagonistic actions of ecdysone and insulins determine final size in Drosophila (2005) Science, 310, pp. 667-670. , 10.1126/science.1119432. 16179433
  • Giot, L., Bader, J.S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y.L., Rothberg, J.M., A protein interaction map of Drosophila melanogaster (2003) Science, 302, pp. 1727-1736. , 10.1126/science.1090289. 14605208
  • James, A.C., Partridge, L., Thermal evolution of the rate of larval development in Drosophila melanogaster in laboratory and fields populations (1995) J Evol Biol, 8, pp. 315-330. , 10.1046/j.1420-9101.1995.8030315.x
  • Folguera, G., Ceballos, S., Spezzi, L., Fanara, J.J., Hasson, E., Clinal variation in developmental time and viability, and the response to thermal treatments in two species of Drososphila Biol J Linn Soc
  • Stillwell, R.C., Fox, C.W., Complex patterns of phenotypic plasticity: Interactive effects of temperature during rearing and oviposition (2005) Ecology, 86, pp. 924-934. , 10.1890/04-0547
  • Bateman, J.M., McNeill, H., Temporal control of differentiation by the insulin receptor/Tor pathway in Drosophila (2004) Cell, 119, pp. 87-96. , 10.1016/j.cell.2004.08.028. 15454083
  • Li, T., White, K.P., Tissue-specific gene expression and ecdysone-regulated genomic networks in Drosophila (2003) Developmental Cell, 5, pp. 59-72. , 10.1016/S1534-5807(03)00192-8. 12852852
  • Kyriacou, C.P., Oldroyd, M., Wood, J., Sharp, M., Hill, M., Clock mutations alter developmental timing in Drosophila (1990) Heredity, 64, pp. 395-401. , 10.1038/hdy.1990.50. 2113515
  • Moss, E.G., Heterochronic genes and the nature of developmental time (2007) Current Biology, 17, pp. 425-434. , 17320389. 10.1016/j.cub.2007.03.043
  • Norga, K.K., Gurganus, M.C., Dilda, C.L., Yamamoto, A., Lyman, R.F., Patel, P.H., Rubin, G.M., Bellen, H.J., Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development (2003) Curr Biol, 13, pp. 1388-1397. , 10.1016/S0960-9822(03)00546-3. 12932322
  • Harbison, S.T., Yamamoto, A.H., Fanara, J.J., Norga, K.K., MacKay, T.F., Quantitative trait loci affecting starvation resistance in Drosophila melanogaster (2004) Genetics, 166, pp. 1807-1823. , 15126400. 10.1534/genetics.166.4.1807
  • Edgar, B., How flies get their size: Genetics meets physiology (2006) Nat Rev Genet, 7, pp. 907-916. , 10.1038/nrg1989. 17139322
  • Bardin, A.J., Le Borgne, R., Schweisguth, F., Asymmetric localization and function of cell-fate determinants: A fly's view (2004) Curr Opin Neurobiol, 14, pp. 6-14. , 10.1016/j.conb.2003.12.002. 15018932
  • Markow, T., O'Grady, P., (2005) Drosophila: A Guide to Species Identification and Use, , Academic Press
  • Paranjpe, D.A., Anitha, D., Chandrashekaran, M.K., Joshi, A., Sharma, V.K., Possible role of eclosion rhythm in mediating the effects of light-dark environments on pre-adult development in Drosophila melanogaster (2005) BMC Developmental Biology, 5, p. 5. , 15725348. 10.1186/1471-213X-5-5
  • Leips, J., MacKay, T.F., Quantitative trait loci for life span in Drosophila melanogaster: Interactions with genetic background and larval density (2000) Genetics, 155, pp. 1773-1788. , 10924473
  • Carlborg, O., Jacobsson, L., Ahgren, P., Siegel, P., Andersson, L., Epistasis and the release of genetic variation during long-term selection (2000) Nat Genet, 38, pp. 418-420. , 10.1038/ng1761. 16532011
  • Le Rouzic, A., Carlborg, O., Evolutionary potential of hidden genetic variation (2008) Trends Ecol Evol, 23, pp. 33-37. , 10.1016/j.tree.2007.09.014. 18079017
  • Lukacsovich, T., Asztalos, Z., Awano, W., Baba, K., Kondo, S., Niwa, S., Yamamoto, D., Dual-tagging gene trap of novel genes in Drosophila melanogaster (2001) Genetics, 157, pp. 727-742. , 11156992
  • Robertson, A., The sampling variance of the genetic correlation coefficient (1959) Biometrics, 15, pp. 469-485. , 10.2307/2527750
  • Ungerer, M.C., Halldorsdottir, S.S., Purugganan, M.D., MacKay, T.F., Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana (2003) Genetics, 165, pp. 353-365. , 14504242
  • Gene Ontology Consortium, T., Gene Ontology: Tool for the unification of biology (2000) Nature Genet, 25, pp. 25-29. , 10.1038/75556. 10802651
  • Al-Shahrour, F., Minguez, P., Vaquerizas, J.M., Conde, L., Dopazo, J., BABELOMICS: A suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments (2005) Nucleic Acids Res, 33, pp. 460-464. , 10.1093/nar/gki456. 15980512

Citas:

---------- APA ----------
Mensch, J., Lavagnino, N., Carreira, V.P., Massaldi, A., Hasson, E. & Fanara, J.J. (2008) . Identifying candidate genes affecting developmental time in Drosophila melanogaster: Pervasive pleiotropy and gene-by-environment interaction. BMC Developmental Biology, 8.
http://dx.doi.org/10.1186/1471-213X-8-78
---------- CHICAGO ----------
Mensch, J., Lavagnino, N., Carreira, V.P., Massaldi, A., Hasson, E., Fanara, J.J. "Identifying candidate genes affecting developmental time in Drosophila melanogaster: Pervasive pleiotropy and gene-by-environment interaction" . BMC Developmental Biology 8 (2008).
http://dx.doi.org/10.1186/1471-213X-8-78
---------- MLA ----------
Mensch, J., Lavagnino, N., Carreira, V.P., Massaldi, A., Hasson, E., Fanara, J.J. "Identifying candidate genes affecting developmental time in Drosophila melanogaster: Pervasive pleiotropy and gene-by-environment interaction" . BMC Developmental Biology, vol. 8, 2008.
http://dx.doi.org/10.1186/1471-213X-8-78
---------- VANCOUVER ----------
Mensch, J., Lavagnino, N., Carreira, V.P., Massaldi, A., Hasson, E., Fanara, J.J. Identifying candidate genes affecting developmental time in Drosophila melanogaster: Pervasive pleiotropy and gene-by-environment interaction. BMC Dev. Biol. 2008;8.
http://dx.doi.org/10.1186/1471-213X-8-78