Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background: The Drosophila wing represents a particularly appropriate model to investigate the developmental control of phenotypic variation. Previous studies which aimed to identify candidate genes for wing morphology demonstrated that the genetic basis of wing shape variation in D. melanogaster is composed of numerous genetic factors causing small, additive effects. In this study, we analyzed wing shape in males and females from 191 lines of D. melanogaster, homozygous for a single P-element insertion, using geometric morphometrics techniques. The analysis allowed us to identify known and novel candidate genes that may contribute to the expression of wing shape in each sex separately and to compare them to candidate genes affecting wing size which have been identified previously using the same lines. Results: Our results indicate that more than 63% of induced mutations affected wing shape in one or both sexes, although only 33% showed significant differences in both males and females. The joint analysis of wing size and shape revealed that only 19% of the P-element insertions caused coincident effects on both components of wing form in one or both sexes. Further morphometrical analyses revealed that the intersection between veins showed the smallest displacements in the proximal region of the wing. Finally, we observed that mutations causing general deformations were more common than expected in both sexes whereas the opposite occurred with those generating local changes. For most of the 94 candidate genes identified, this seems to be the first record relating them with wing shape variation. Conclusions: Our results support the idea that the genetic architecture of wing shape is complex with many different genes contributing to the trait in a sexually dimorphic manner. This polygenic basis, which is relatively independent from that of wing size, is composed of genes generally involved in development and/or metabolic functions, especially related to the regulation of different cellular processes such as motility, adhesion, communication and signal transduction. This study suggests that understanding the genetic basis of wing shape requires merging the regulation of vein patterning by signalling pathways with processes that occur during wing development at the cellular level. © 2011 Carreira et al; licensee BioMed Central Ltd.

Registro:

Documento: Artículo
Título:Genetic basis of wing morphogenesis in Drosophila: Sexual dimorphism and non-allometric effects of shape variation
Autor:Carreira, V.P.; Soto, I.M.; Mensch, J.; Fanara, J.J.
Filiación:Departamento de Ecología, Genética y Evolucián, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428 EHA Buenos Aires, Argentina
Palabras clave:Drosophila melanogaster; animal; article; congenital malformation; Drosophila melanogaster; female; forelimb; genetics; genotype; histology; male; morphogenesis; morphometrics; mutation; phenotype; physiology; sexual development; Animals; Body Weights and Measures; Drosophila melanogaster; Female; Genotype; Male; Morphogenesis; Mutation; Phenotype; Sex Characteristics; Wing
Año:2011
Volumen:11
DOI: http://dx.doi.org/10.1186/1471-213X-11-32
Título revista:BMC Developmental Biology
Título revista abreviado:BMC Dev. Biol.
ISSN:1471213X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1471213X_v11_n_p_Carreira

Referencias:

  • Kerszberg, M., Wolpert, L., Specifying Positional Information in the Embryo: Looking Beyond Morphogens (2007) Cell, 130 (2), pp. 205-209. , DOI 10.1016/j.cell.2007.06.038, PII S0092867407008434
  • De Celis, J.F., Pattern formation in the Drosophila wing: The development of the veins (2003) BioEssays, 25 (5), pp. 443-451. , DOI 10.1002/bies.10258
  • Blair, S.S., Wing vein patterning in Drosophila and the analysis of intercellular signaling (2007) Annu Rev Cell Dev Biol, 23, pp. 293-319. , 10.1146/annurev.cellbio.23.090506.123606. 17506700
  • De Celis, J.F., Diaz-Benjumea, F.J., Developmental basis for vein pattern variations in insect wings (2003) International Journal of Developmental Biology, 47 (7-8), pp. 653-663
  • Blehs, B., Sturtevant, M.A., Bier, E., Boundaries in the Drosophila wing imaginal disc organize vein-specific genetic programs (1998) Development, 125 (21), pp. 4245-4257
  • Palsson, A., Gibson, G., Quantitative developmental genetic analysis reveals that the ancestral dipteran wing vein prepattern is conserved in Drosophila melanogaster (2000) Dev Genes Evol, 210, pp. 617-622. , 10.1007/s004270000107. 11151298
  • Bier, E., Drawing lines in the Drosophila wing: Initiation of wing vein development (2000) Current Opinion in Genetics and Development, 10 (4), pp. 393-398. , DOI 10.1016/S0959-437X(00)00102-7
  • Garcia-Bellido, A., De Celis, J.F., Developmental genetics of the venation pattern of Drosophila (1992) Annual Review of Genetics, 26, pp. 277-304
  • Crozatier, M., Glise, B., Vincent, A., Connecting Hh, Dpp and EGF signaling in patterning of the Drosophila wing; The pivotal role of collier/knot in the AP organizer (2002) Development, 129, pp. 4261-4269. , 12183378
  • Sotillos, S., De Celis, J.F., Interactions between the Notch, EGFR, and Decapentaplegic signaling pathways regulate vein differentiation during Drosophila pupal wing development (2005) Developmental Dynamics, 232 (3), pp. 738-752. , DOI 10.1002/dvdy.20270
  • Yan, S.-J., Gu, Y., Li, W.X., Fleming, R.J., Multiple signaling pathways and a selector protein sequentially regulate Drosophila wing development (2004) Development, 131 (2), pp. 285-298. , DOI 10.1242/dev.00934
  • Dworkin, I., Gibson, G., Epidermal growth factor receptor and transforming growth factor-β signaling contributes to variation for wing shape in Drosophila melanogaster (2006) Genetics, 173 (3), pp. 1417-1431. , http://www.genetics.org/cgi/reprint/173/3/1417, DOI 10.1534/genetics.105.053868
  • Lukacsovich, T., Asztalos, Z., Awano, W., Baba, K., Kondo, S., Niwa, S., Yamamoto, D., Dual-tagging gene trap of novel genes in Drosophila melanogaster (2001) Genetics, 157 (2), pp. 727-742
  • Bellen, H.J., Levis, R.W., Liao, G., He, Y., Carlson, J.W., Tsang, G., Evans-Holm, M., Spradling, A.C., The BDGP gene disruption project: Single transposon insertions associated with 40% of Drosophila genes (2004) Genetics, 167 (2), pp. 761-781. , DOI 10.1534/genetics.104.026427
  • Anholt, R.R.H., Lyman, R.F., Mackay, T.F.C., Effects of single P-Element insertions on olfactory behavior in Drosophila melanogaster (1996) Genetics, 143 (1), pp. 293-301
  • Carreira, V.P., Mensch, J., Fanara, J.J., Body size in Drosophila: Genetic architecture, allometries and sexual dimorphism (2009) Heredity, 102, pp. 246-256. , 10.1038/hdy.2008.117. 19018274
  • Harbison, S.T., Yamamoto, A.H., Fanara, J.J., Norga, K.K., Mackay, T.F.C., Quantitative Trait Loci Affecting Starvation Resistance in Drosophila melanogaster (2004) Genetics, 166 (4), pp. 1807-1823. , DOI 10.1534/genetics.166.4.1807
  • Lyman, R.F., Lawrence, F., Nuzhdin, S.V., Mackay, T.F.C., Effects of single P-element insertions on bristle number and viability in Drosophila melanogaster (1996) Genetics, 143 (1), pp. 277-292
  • Mensch, J., Lavagnino, N., Carreira, V.P., Massaldi, A., Hasson, E., Fanara, J.J., Identifying candidate genes affecting developmental time in Drosophila melanogaster: Pervasive pleiotropy and gene-by-environment interaction (2008) BMC Dev Biol, 8, p. 78. , 10.1186/1471-213X-8-78. 18687152
  • Norga, K.K., Gurganus, M.C., Dilda, C.L., Yamamoto, A., Lyman, R.F., Patel, P.H., Rubin, G.M., Bellen, H.J., Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development (2003) Current Biology, 13 (16), pp. 1388-1397. , DOI 10.1016/S0960-9822(03)00546-3
  • Sambandan, D., Yamamoto, A., Fanara, J.-J., Mackay, T.F.C., Anholt, R.R.H., Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster (2006) Genetics, 174 (3), pp. 1349-1363. , http://www.genetics.org/cgi/reprint/174/3/1349.pdf, DOI 10.1534/genetics.106.060574
  • Birdsall, K., Zimmerman, E., Teeter, K., Gibson, G., Genetic variation for the positioning of wing veins in Drosophila melanogaster (2000) Evolution and Development, 2 (1), pp. 16-24. , DOI 10.1046/j.1525-142X.2000.00034.x
  • Gilchrist, A.S., Partridge, L., The contrasting genetic architecture of wing size and shape in Drosophila melanogaster (2001) Heredity, 86 (2), pp. 144-152
  • Mezey, J.G., Houle, D., The dimensionality of genetic variation for wing shape in Drosophila melanogaster (2005) Evolution, 59 (5), pp. 1027-1038
  • Palsson, A., Gibson, G., Association between nucleotide variation in Egfr and wing shape in Drosophila melanogaster (2004) Genetics, 167 (3), pp. 1187-1198. , DOI 10.1534/genetics.103.021766
  • Weber, K.E., Selection on wing allometry in Drosophila melanogaster (1990) Genetics, 126, pp. 975-989. , 2127580
  • Mezey, J.G., Houle, D., Nuzhdin, S.V., Naturally segregating quantitative trait loci affecting wing shape of Drosophila melanogaster (2005) Genetics, 169 (4), pp. 2101-2113. , DOI 10.1534/genetics.104.036988
  • Weber, K., Eisman, R., Morey, L., Patty, A., Sparks, J., Tausek, M., Zeng, Z.B., An analysis of polygenes affecting wing shape on chromosome 3 in Drosophila melanogaster (1999) Genetics, 153, pp. 773-786. , 10511557
  • Weber, K., Eisman, R., Higgins, S., Morey, L., Patty, A., Tausek, M., Zeng, Z.-B., An analysis of polygenes affecting wing shape on chromosome 2 in Drosophila melanogaster (2001) Genetics, 159 (3), pp. 1045-1057
  • Weber, K.E., Greenspan, R.J., Chicoine, D.R., Fiorentino, K., Thomas, M.H., Knight, T.L., Microarray analysis of replicate populations selected against a wing-shape correlation in Drosophila melanogaster (2008) Genetics, 178 (2), pp. 1093-1108. , http://www.genetics.org/cgi/reprint/178/2/1093, DOI 10.1534/genetics.107.078014
  • Zimmerman, E., Palsson, A., Gibson, G., Quantitative trait loci affecting components of wing shape in Drosophila melanogaster (2000) Genetics, 155 (2), pp. 671-683
  • Weber, K., Johnson, N., Champlin, D., Patty, A., Many P-element insertions affect wing shape in Drosophila melanogaster (2005) Genetics, 169 (3), pp. 1461-1475. , DOI 10.1534/genetics.104.027748
  • Rollmann, S.M., Magwire, M.M., Morgan, T.J., Ozsoy, E.D., Yamamoto, A., Mackay, T.F.C., Anholt, R.R.H., Pleiotropic fitness effects of the Tre1-Gr5a region in Drosophila melanogaster (2006) Nature Genetics, 38 (7), pp. 824-829. , DOI 10.1038/ng1823, PII N1823
  • Gene Ontology: Tool for the unification of biology (2000) Nat Genet, 25, pp. 25-29. , The Gene Ontology Consortium 10.1038/75556. 10802651
  • Dworkin, I., Palsson, A., Gibson, G., Replication of an Egfr-wing shape association in a wild-caught cohort of Drosophila melanogaster (2005) Genetics, 169 (4), pp. 2115-2125. , DOI 10.1534/genetics.104.035766
  • Parisi, M., Nuttall, R., Edwards, P., Minor, J., Naiman, D., Lü, J., Doctolero, M., Oliver, B., A survey of ovary-, testis-, and soma-biased gene expression in Drosophila melanogaster adults (2004) Genome Biol, 5, p. 1840. , 10.1186/gb-2004-5-6-r40. 15186491
  • Ranz, J.M., Castillo-Davis, C.I., Meiklejohn, C.D., Hartl, D.L., Sex-dependent gene expression and evolution of the Drosophila transcriptome (2003) Science, 300 (5626), pp. 1742-1745. , DOI 10.1126/science.1085881
  • Baines, J.F., Sawyer, S.A., Hartl, D.L., Parsch, J., Effects of X-linkage and sex-biased gene expression on the rate of adaptive protein evolution in Drosophila (2008) Molecular Biology and Evolution, 25 (8), pp. 1639-1650. , DOI 10.1093/molbev/msn111
  • Connallon, T., Adaptive protein evolution of X-linked and autosomal genes in Drosophila: Implications for faster-X hypotheses (2007) Molecular Biology and Evolution, 24 (11), pp. 2566-2572. , DOI 10.1093/molbev/msm199
  • Meiklejohn, C.D., Parsch, J., Ranz, J.M., Hartl, D.L., Rapid evolution of male-biased gene expression in Drosophila (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (17), pp. 9894-9899. , DOI 10.1073/pnas.1630690100
  • Parisi, M., Nuttall, R., Naiman, D., Bouffard, G., Malley, J., Andrews, J., Eastman, S., Oliver, B., Paucity of genes on the Drosophila X chromosome showing male-biased expression (2003) Science, 299 (5607), pp. 697-700. , DOI 10.1126/science.1079190
  • Proschel, M., Zhang, Z., Parsch, J., Widespread adaptive evolution of Drosophila genes with sex-biased expression (2006) Genetics, 174 (2), pp. 893-900. , http://www.genetics.org/cgi/reprint/174/2/893.pdf, DOI 10.1534/genetics.106.058008
  • Zhang, Z., Hambuch, T.M., Parsch, J., Molecular evolution of sex-biased genes in Drosophila (2004) Molecular Biology and Evolution, 21 (11), pp. 2130-2139. , DOI 10.1093/molbev/msh223
  • Butler, M.J., Jacobsen, T.L., Cain, D.M., Jarman, M.G., Hubank, M., Whittle, J.R.S., Phillips, R., Simcox, A., Discovery of genes with highly restricted expression patterns in the Drosophila wing disc using DNA oligonucleotide microarrays (2003) Development, 130 (4), pp. 659-670. , DOI 10.1242/dev.00293
  • Klebes, A., Biehs, B., Cifuentes, F., Kornberg, T.B., Expression profiling of Drosophila imaginal discs (2002) Genome Biol, 3 (8), pp. 18esearch00381-003816. , 10.1186/gb-2002-3-8-research0038
  • Mank, J.E., Synthesis. Sex Chromosomes and the Evolution of Sexual Dimorphism: Lessons from the Genome (2009) Am Nat, 173 (2), pp. 141-150. , 10.1086/595754. 20374139
  • Sturgill, D., Zhang, Y., Parisi, M., Oliver, B., Demasculinization of X chromosomes in the Drosophila genus (2007) Nature, 450, pp. 233-237. , 10.1038/nature06323. 17994089
  • Abbott, J.K., Bedhomme, S., Chippindale, A.K., Sexual conflict in wing size and shape in Drosophila melanogaster (2010) J Evol Biol, 23 (9), pp. 1989-1997. , 10.1111/j.1420-9101.2010.02064.x. 20695965
  • Gidaszewski, N.A., Baylac, M., Klingenberg, C.P., Evolution of sexual dimorphism of wing shape in the Drosophila melanogaster subgroup (2009) BMC Evol Biol, 9, p. 110. , 10.1186/1471-2148-9-110. 19457235
  • Guillén, I., Mullor, J.L., Capdevila, J., Sanchez-Herrero, E., Morata, G., Guerrero, I., The function of engrailed and the specification of Drosophila wing pattern (1995) Development, 121, pp. 3447-3456. , 7588077
  • Simmonds, A.J., Brook, W.J., Cohen, S.M., Bell, J.B., Distinguishable functions for engrailed and invected in anterior-posterior patterning in the Drosphila wing (1995) Nature, 376, pp. 424-427. , 10.1038/376424a0. 7630417
  • Mensch, J., Carreira, V., Lavagnino, N., Goenaga, J., Folguera, G., Hasson, E., Fanara, J.J., Stage-Specific effects of candidate heterochronic genes on variation in developmental time along an altitudinal cline of Drosophila melanogaster (2010) Plos One, 5 (6), p. 11229. , 10.1371/journal.pone.0011229
  • Legent, K., Dutriaux, A., Delanoue, R., Silber, J., Cell cycle genes regulate vestigial and scalloped to ensure normal proliferation in the wing disc of Drosophila melanogaster (2006) Genes to Cells, 11 (8), pp. 907-918. , DOI 10.1111/j.1365-2443.2006.00993.x
  • Halder, G., Polaczyk, P., Kraus, M.E., Hudson, A., Kim, J., Laughon, A., Carroll, S., The Vestigial and Scalloped proteins act together to directly regulate wing-specific gene expression in Drosophila (1998) Genes and Development, 12 (24), pp. 3900-3909
  • Simmonds, A.J., Liu, X., Soanes, K.H., Krause, H.M., Irvine, K.D., Bell, J.B., Molecular interactions between Vestigial and Scalloped promote wing formation in Drosophila (1998) Genes and Development, 12 (24), pp. 3815-3820
  • Brown, N.H., Gregory, S.L., Martin-Bermudo, M.D., Integrins as mediators of morphogenesis in Drosophila (2000) Developmental Biology, 223 (1), pp. 1-16. , DOI 10.1006/dbio.2000.9711
  • Fristrom, D., Wilcox, M., Fristrom, J., The distribution of PS integrins, laminin A and F-actin during key stages in Drosophila wing development (1993) Development, 117 (2), pp. 509-523
  • Bvvg, R., Irvine, K.D., The Fat and Warts signaling pathways: New insights into their regulation, mechanism and conservation (2008) Development, 135, pp. 2827-2838. , 10.1242/dev.020974. 18697904
  • Classen, A.-K., Anderson, K.I., Marois, E., Eaton, S., Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway (2005) Developmental Cell, 9 (6), pp. 805-817. , DOI 10.1016/j.devcel.2005.10.016, PII S153458070500420X
  • Lecuit, T., Le Goff, L., Orchestrating size and shape during morphogenesis (2007) Nature, 450 (7167), pp. 189-192. , DOI 10.1038/nature06304, PII NATURE06304
  • Fristrom, D., The mechanism of evagination of imaginal discs of Drosophila melanogaster III. Evidence for cell rearrangement (1976) Dev Biol, 54, pp. 163-171. , (1976). 10.1016/0012-1606(76)90296-7. 825402
  • García-Bellido, A., The cellular and genetic bases of organ size and shape in Drosophila (2009) Int J Dev Biol, 53, pp. 1291-1303. , 10.1387/ijdb.072459ag. 19924628
  • Rohlf, F.J., (2001) TpsDig, v 1.31. Free Software, , http://life.bio.sunysb.edu/morph/soft-dataacq.html, Ecology & Evolution, SUNY, Stony Brook
  • Rohlf, F.J., Slice, D., Extensions of the procrustes method for the superimposition of landmarks (1990) Syst Zool, 39, pp. 40-59. , 10.2307/2992207
  • Bookstein, F.L., (1991) Morphometric Tools for Landmark Data: Geometry and Biology, , Cambridge University Press, Cambridge
  • Rohlf, F.J., Relative warp analysis and an example of its application to mosquito wings (1993) Contributions to Morphometrics, pp. 131-159. , Madrid: Monografías. Museo Nacional de Ciencias Naturales Marcus LF, Bello E, Garcia-Valdecasas A
  • Rohlf, F.J., (2003) TpsRelw. v 1.31. Free Software, , http://life.bio.sunysb.edu/morph/soft-tps.html, Ecology & Evolution, SUNY, Stony Brook
  • (2004) StatSoft Inc: STATISTICA (Data Analysis Software System), Version 7, , http://www.statsoft.com
  • Flybase, , http://flybase.bio.indiana.edu/
  • Al-Shahrour, F., Minguez, P., Tárraga, J., Montaner, D., Alloza, E., Vaquerizas, J.M.M., Conde, L., Dopazo, J., BABELOMICS: A systems biology perspective in the functional annotation of genome-scale experiments (2006) Nucl Acids Res, 34, pp. 472-476. , 10.1093/nar/gkj442. 16434700
  • Babelomics, , http://www.fatigo.org/
  • Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N., Golani, I., Controlling the false discovery rate in behavior genetics research (2001) Behavioural Brain Research, 125 (1-2), pp. 279-284. , DOI 10.1016/S0166-4328(01)00297-2, PII S0166432801002972
  • Rohlf, F.J., (2004) TpsSplin. v 1.18. Free Software, , http://life.bio.sunysb.edu/morph/soft-tps.html, Ecology & Evolution, SUNY, Stony Brook

Citas:

---------- APA ----------
Carreira, V.P., Soto, I.M., Mensch, J. & Fanara, J.J. (2011) . Genetic basis of wing morphogenesis in Drosophila: Sexual dimorphism and non-allometric effects of shape variation. BMC Developmental Biology, 11.
http://dx.doi.org/10.1186/1471-213X-11-32
---------- CHICAGO ----------
Carreira, V.P., Soto, I.M., Mensch, J., Fanara, J.J. "Genetic basis of wing morphogenesis in Drosophila: Sexual dimorphism and non-allometric effects of shape variation" . BMC Developmental Biology 11 (2011).
http://dx.doi.org/10.1186/1471-213X-11-32
---------- MLA ----------
Carreira, V.P., Soto, I.M., Mensch, J., Fanara, J.J. "Genetic basis of wing morphogenesis in Drosophila: Sexual dimorphism and non-allometric effects of shape variation" . BMC Developmental Biology, vol. 11, 2011.
http://dx.doi.org/10.1186/1471-213X-11-32
---------- VANCOUVER ----------
Carreira, V.P., Soto, I.M., Mensch, J., Fanara, J.J. Genetic basis of wing morphogenesis in Drosophila: Sexual dimorphism and non-allometric effects of shape variation. BMC Dev. Biol. 2011;11.
http://dx.doi.org/10.1186/1471-213X-11-32