Artículo

Bonomi, H.R.; Toum, L.; Sycz, G.; Sieira, R.; Toscani, A.M.; Gudesblat, G.E.; Leskow, F.C.; Goldbaum, F.A.; Vojnov, A.A.; Malamud, F. "Xanthomonas campestris attenuates virulence by sensing light through a bacteriophytochrome photoreceptor" (2016) EMBO Reports. 17(11):1565-1577
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Phytochromes constitute a major photoreceptor family found in plants, algae, fungi, and prokaryotes, including pathogens. Here, we report that Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot disease which affects cruciferous crops worldwide, codes for a functional bacteriophytochrome (XccBphP). XccBphP possesses an N-terminal PAS2-GAF-PHY photosensory domain triad and a C-terminal PAS9 domain as its output module. Our results show that illumination of Xcc, prior to plant infection, attenuates its virulence in an XccBphP-dependent manner. Moreover, in response to light, XccBphP downregulates xanthan exopolysaccharide production and biofilm formation, two known Xcc virulence factors. Furthermore, the XccbphP null mutant shows enhanced virulence, similar to that of dark-adapted Xcc cultures. Stomatal aperture regulation and callose deposition, both well-established plant defense mechanisms against bacterial pathogens, are overridden by the XccbphP strain. Additionally, an RNA-Seq analysis reveals that far-red light or XccBphP overexpression produces genomewide transcriptional changes, including the inhibition of several Xcc virulence systems. Our findings indicate that Xcc senses light through XccBphP, eliciting bacterial virulence attenuation via downregulation of bacterial virulence factors. The capacity of XccBphP to respond to light both in vitro and in vivo was abolished by a mutation on the conserved Cys13 residue. These results provide evidence for a novel bacteriophytochrome function affecting an infectious process. © 2016 The Authors

Registro:

Documento: Artículo
Título:Xanthomonas campestris attenuates virulence by sensing light through a bacteriophytochrome photoreceptor
Autor:Bonomi, H.R.; Toum, L.; Sycz, G.; Sieira, R.; Toscani, A.M.; Gudesblat, G.E.; Leskow, F.C.; Goldbaum, F.A.; Vojnov, A.A.; Malamud, F.
Filiación:Fundación Instituto Leloir – IIBBA CONICET, Buenos Aires, Argentina
Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
UNSAM Campus Miguelete IIB - Instituto de Investigaciones Biotecnológicas, Buenos Aires, Argentina
Palabras clave:bathy-type phytochrome; infection; plant defenses; transcriptional regulation; virulence factors; bacteriophytochrome; exopolysaccharide; phytochrome; unclassified drug; virulence factor; xanthan; bacterial polysaccharide; bacterial protein; phytochrome; amino terminal sequence; Article; bacterial virulence; biofilm; carbohydrate synthesis; carboxy terminal sequence; controlled study; far red light; illumination; light; nonhuman; photoreceptor; plant defense; priority journal; sequence analysis; Xanthomonas campestris; biosynthesis; crop; gene expression regulation; genetics; growth, development and aging; high throughput sequencing; light; metabolism; microbiology; mutation; pathogenicity; plant disease; Xanthomonas campestris; Bacterial Proteins; Biofilms; Crops, Agricultural; Gene Expression Regulation, Bacterial; High-Throughput Nucleotide Sequencing; Light; Mutation; Phytochrome; Plant Diseases; Polysaccharides, Bacterial; Virulence Factors; Xanthomonas campestris
Año:2016
Volumen:17
Número:11
Página de inicio:1565
Página de fin:1577
DOI: http://dx.doi.org/10.15252/embr.201541691
Título revista:EMBO Reports
Título revista abreviado:EMBO Rep.
ISSN:1469221X
CODEN:ERMEA
CAS:phytochrome, 117102-58-6; xanthan, 11138-66-2; Bacterial Proteins; Phytochrome; Polysaccharides, Bacterial; Virulence Factors; xanthan gum
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1469221X_v17_n11_p1565_Bonomi

Referencias:

  • Auldridge, M.E., Forest, K.T., Bacterial phytochromes: more than meets the light (2011) Crit Rev Biochem Mol Biol, 46, pp. 67-88
  • Purcell, E.B., Crosson, S., Photoregulation in prokaryotes (2008) Curr Opin Microbiol, 11, pp. 168-178
  • Bonomi, H.R., Posadas, D.M., Paris, G., Carrica Mdel, C., Frederickson, M., Pietrasanta, L.I., Bogomolni, R.A., Goldbaum, F.A., Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor (2012) Proc Natl Acad Sci USA, 109, pp. 12135-12140
  • Swartz, T.E., Tseng, T.S., Frederickson, M.A., Paris, G., Comerci, D.J., Rajashekara, G., Kim, J.G., Ugalde, R.A., Blue-light-activated histidine kinases: two-component sensors in bacteria (2007) Science, 317, pp. 1090-1093
  • Kraiselburd, I., Alet, A.I., Tondo, M.L., Petrocelli, S., Daurelio, L.D., Monzon, J., Ruiz, O.A., Orellano, E.G., A LOV protein modulates the physiological attributes of Xanthomonas axonopodis pv. citri relevant for host plant colonization (2012) PLoS ONE, 7
  • Rockwell, N.C., Lagarias, J.C., A brief history of phytochromes (2010) Chemphyschem, 11, pp. 1172-1180
  • Rockwell, N.C., Duanmu, D., Martin, S.S., Bachy, C., Price, D.C., Bhattacharya, D., Worden, A.Z., Lagarias, J.C., Eukaryotic algal phytochromes span the visible spectrum (2014) Proc Natl Acad Sci USA, 111, pp. 3871-3876
  • Rockwell, N.C., Su, Y.S., Lagarias, J.C., Phytochrome structure and signaling mechanisms (2006) Annu Rev Plant Biol, 57, pp. 837-858
  • Possart, A., Fleck, C., Hiltbrunner, A., Shedding (far-red) light on phytochrome mechanisms and responses in land plants (2014) Plant Sci, 217-218, pp. 36-46
  • Hughes, J., Phytochrome cytoplasmic signaling (2013) Annu Rev Plant Biol, 64, pp. 377-402
  • Hughes, J., Lamparter, T., Mittmann, F., Hartmann, E., Gartner, W., Wilde, A., Borner, T., A prokaryotic phytochrome (1997) Nature, 386, p. 663
  • Yeh, K.C., Wu, S.H., Murphy, J.T., Lagarias, J.C., A cyanobacterial phytochrome two-component light sensory system (1997) Science, 277, pp. 1505-1508
  • Wu, L., McGrane, R.S., Beattie, G.A., Light regulation of swarming motility in Pseudomonas syringae integrates signaling pathways mediated by a bacteriophytochrome and a LOV protein (2013) mBio, 4
  • Davis, S.J., Vener, A.V., Vierstra, R.D., Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria (1999) Science, 286, pp. 2517-2520
  • Williams, P.H., Black rot: a continuing threat to world crucifers (1980) Plant Dis, 64, pp. 736-742
  • Vicente, J.G., Holub, E.B., Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops (2013) Mol Plant Pathol, 14, pp. 2-18
  • Gudesblat, G.E., Torres, P.S., Vojnov, A.A., Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor (2009) Plant Physiol, 149, pp. 1017-1027
  • Vorholt, J.A., Microbial life in the phyllosphere (2012) Nat Rev Microbiol, 10, pp. 828-840
  • Bhoo, S.H., Davis, S.J., Walker, J., Karniol, B., Vierstra, R.D., Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore (2001) Nature, 414, pp. 776-779
  • Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A., Mistry, J., Pfam: the protein families database (2014) Nucleic Acids Res, 42, pp. D222-D230
  • Lamparter, T., Carrascal, M., Michael, N., Martinez, E., Rottwinkel, G., Abian, J., The biliverdin chromophore binds covalently to a conserved cysteine residue in the N-terminus of Agrobacterium phytochrome Agp1 (2004) Biochemistry, 43, pp. 3659-3669
  • Otero, L.H., Klinke, S., Rinaldi, J., Velazquez-Escobar, F., Mroginski, M.A., Fernandez Lopez, M., Malamud, F., Goldbaum, F.A., Structure of the full-length bacteriophytochrome from the plant pathogen Xanthomonas campestris provides clues to its long-range signaling mechanism (2016) J Mol Biol
  • Moglich, A., Ayers, R.A., Moffat, K., Structure and signaling mechanism of Per-ARNT-Sim domains (2009) Structure, 17, pp. 1282-1294
  • Rottwinkel, G., Oberpichler, I., Lamparter, T., Bathy phytochromes in rhizobial soil bacteria (2010) J Bacteriol, 192, pp. 5124-5133
  • Karniol, B., Vierstra, R.D., The pair of bacteriophytochromes from Agrobacterium tumefaciens are histidine kinases with opposing photobiological properties (2003) Proc Natl Acad Sci USA, 100, pp. 2807-2812
  • Underwood, W., Melotto, M., He, S.Y., Role of plant stomata in bacterial invasion (2007) Cell Microbiol, 9, pp. 1621-1629
  • Rigano, L.A., Payette, C., Brouillard, G., Marano, M.R., Abramowicz, L., Torres, P.S., Yun, M., Dufour, V., Bacterial cyclic beta-(1,2)-glucan acts in systemic suppression of plant immune responses (2007) Plant Cell, 19, pp. 2077-2089
  • Yun, M.H., Torres, P.S., El Oirdi, M., Rigano, L.A., Gonzalez-Lamothe, R., Marano, M.R., Castagnaro, A.P., Vojnov, A.A., Xanthan induces plant susceptibility by suppressing callose deposition (2006) Plant Physiol, 141, pp. 178-187
  • Millet, Y.A., Danna, C.H., Clay, N.K., Songnuan, W., Simon, M.D., Werck-Reichhart, D., Ausubel, F.M., Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns (2010) Plant Cell, 22, pp. 973-990
  • Barber, C.E., Tang, J.L., Feng, J.X., Pan, M.Q., Wilson, T.J., Slater, H., Dow, J.M., Daniels, M.J., A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule (1997) Mol Microbiol, 24, pp. 555-566
  • Buttner, D., Bonas, U., Regulation and secretion of Xanthomonas virulence factors (2010) FEMS Microbiol Rev, 34, pp. 107-133
  • Torres, P.S., Malamud, F., Rigano, L.A., Russo, D.M., Marano, M.R., Castagnaro, A.P., Zorreguieta, A., Vojnov, A.A., Controlled synthesis of the DSF cell-cell signal is required for biofilm formation and virulence in Xanthomonas campestris (2007) Environ Microbiol, 9, pp. 2101-2109
  • Rigano, L.A., Siciliano, F., Enrique, R., Sendin, L., Filippone, P., Torres, P.S., Questa, J., Vojnov, A.A., Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri (2007) Mol Plant Microbe Interact, 20, pp. 1222-1230
  • Malamud, F., Torres, P.S., Roeschlin, R., Rigano, L.A., Enrique, R., Bonomi, H.R., Castagnaro, A.P., Vojnov, A.A., The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development (2011) Microbiology, 157, pp. 819-829
  • Baptista, J.C., Machado, M.A., Homem, R.A., Torres, P.S., Vojnov, A.A., do Amaral, A.M., Mutation in the xpsD gene of Xanthomonas axonopodis pv. citri affects cellulose degradation and virulence (2010) Genet Mol Biol, 33, pp. 146-153
  • Meyer, K.M., Leveau, J.H., Microbiology of the phyllosphere: a playground for testing ecological concepts (2012) Oecologia, 168, pp. 621-629
  • Lindow, S.E., Brandl, M.T., Microbiology of the phyllosphere (2003) Appl Environ Microbiol, 69, pp. 1875-1883
  • Gunasekera, T.S., Sundin, G.W., Role of nucleotide excision repair and photoreactivation in the solar UVB radiation survival of Pseudomonas syringae pv. syringae B728a (2006) J Appl Microbiol, 100, pp. 1073-1083
  • Rio-Alvarez, I., Rodriguez-Herva, J.J., Martinez, P.M., Gonzalez-Melendi, P., Garcia-Casado, G., Rodriguez-Palenzuela, P., Lopez-Solanilla, E., Light regulates motility, attachment and virulence in the plant pathogen Pseudomonas syringae pv tomato DC3000 (2013) Environ Microbiol, 16, pp. 2072-2085
  • Ricci, A., Dramis, L., Shah, R., Gartner, W., Losi, A., Visualizing the relevance of bacterial blue- and red-light receptors during plant-pathogen interaction (2015) Environ Microbiol Rep, 7, pp. 795-802
  • Moriconi, V., Sellaro, R., Ayub, N., Soto, G., Rugnone, M., Shah, R., Pathak, G.P., Casal, J.J., LOV-domain photoreceptor, encoded in a genomic island, attenuates the virulence of Pseudomonas syringae in light-exposed Arabidopsis leaves (2013) Plant J, 76, pp. 322-331
  • de Wit, M., Spoel, S.H., Sanchez-Perez, G.F., Gommers, C.M., Pieterse, C.M., Voesenek, L.A., Pierik, R., Perception of low red: far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis (2013) Plant J, 75, pp. 90-103
  • Hua, J., Modulation of plant immunity by light, circadian rhythm, and temperature (2013) Curr Opin Plant Biol, 16, pp. 406-413
  • Griebel, T., Zeier, J., Light regulation and daytime dependency of inducible plant defenses in Arabidopsis: phytochrome signaling controls systemic acquired resistance rather than local defense (2008) Plant Physiol, 147, pp. 790-801
  • Sorhagen, K., Laxa, M., Peterhansel, C., Reumann, S., The emerging role of photorespiration and non-photorespiratory peroxisomal metabolism in pathogen defence (2013) Plant Biol, 15, pp. 723-736
  • He, Y.W., Zhang, L.H., Quorum sensing and virulence regulation in Xanthomonas campestris (2008) FEMS Microbiol Rev, 32, pp. 842-857
  • Ryan, R.P., An, S.Q., Allan, J.H., McCarthy, Y., Dow, J.M., The DSF family of cell-cell signals: an expanding class of bacterial virulence regulators (2015) PLoS Pathog, 11
  • Smith, H., Phytochromes and light signal perception by plants–an emerging synthesis (2000) Nature, 407, pp. 585-591
  • Cadmus, M.C., Rogovin, S.P., Burton, K.A., Pittsley, J.E., Knutson, C.A., Jeanes, A., Colonial variation in Xanthomonas campestris NRRL B-1459 and characterization of the polysaccharide from a variant strain (1976) Can J Microbiol, 22, pp. 942-948
  • Sherwood, M.T., Improved synthetic medium for the growth of Rhizobium (1970) J Appl Bacteriol, 33, pp. 708-713
  • Malamud, F., Homem, R.A., Conforte, V.P., Yaryura, P.M., Castagnaro, A.P., Marano, M.R., do Amaral, A.M., Vojnov, A.A., Identification and characterization of biofilm formation-defective mutants of Xanthomonas citri subsp. citri (2013) Microbiology, 159, pp. 1911-1919
  • Prentki, P., Krisch, H.M., In vitro insertional mutagenesis with a selectable DNA fragment (1984) Gene, 29, pp. 303-313
  • Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G., Puhler, A., Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum (1994) Gene, 145, pp. 69-73
  • Kovach, M.E., Phillips, R.W., Elzer, P.H., Roop, R.M., II, Peterson, K.M., pBBR1MCS: a broad-host-range cloning vector (1994) Biotechniques, 16, pp. 800-802
  • Kumar, S., Stecher, G., Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33, pp. 1870-1874
  • Whelan, S., Goldman, N., A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach (2001) Mol Biol Evol, 18, pp. 691-699
  • Letunic, I., Bork, P., Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees (2016) Nucleic Acids Res, 44, pp. W242-W245
  • Klinke, S., Otero, L.H., Rinaldi, J., Sosa, S., Guimaraes, B.G., Shepard, W.E., Goldbaum, F.A., Bonomi, H.R., Crystallization and preliminary X-ray characterization of the full-length bacteriophytochrome from the plant pathogen Xanthomonas campestris pv. campestris (2014) Acta Crystallogr F Struct Biol Commun, 70, pp. 1636-1639
  • Vojnov, A.A., Zorreguieta, A., Dow, J.M., Daniels, M.J., Dankert, M.A., Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris (1998) Microbiology, 144, pp. 1487-1493
  • Malamud, F., Conforte, V.P., Rigano, L.A., Castagnaro, A.P., Marano, M.R., Morais do Amaral, A., Vojnov, A.A., HrpM is involved in glucan biosynthesis, biofilm formation and pathogenicity in Xanthomonas citri ssp. citri (2012) Mol Plant Pathol, 13, pp. 1010-1018
  • Heydorn, A., Nielsen, A.T., Hentzer, M., Sternberg, C., Givskov, M., Ersboll, B.K., Molin, S., Quantification of biofilm structures by the novel computer program COMSTAT (2000) Microbiology, 146, pp. 2395-2407
  • Ortiz, G., Blasco, M., Albertó, E., An economical and high throughput alternative for endoglucanase activity determination (2016) BioTechnology – An Indian Journal, 12, pp. 70-74
  • Bolger, A.M., Lohse, M., Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data (2014) Bioinformatics, 30, pp. 2114-2120
  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Durbin, R., The sequence alignment/map format and SAMtools (2009) Bioinformatics, 25, pp. 2078-2079
  • Li, H., Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform (2009) Bioinformatics, 25, pp. 1754-1760
  • Liao, Y., Smyth, G.K., Shi, W., FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features (2014) Bioinformatics, 30, pp. 923-930
  • Anders, S., Huber, W., Differential expression analysis for sequence count data (2010) Genome Biol, 11, p. R106

Citas:

---------- APA ----------
Bonomi, H.R., Toum, L., Sycz, G., Sieira, R., Toscani, A.M., Gudesblat, G.E., Leskow, F.C.,..., Malamud, F. (2016) . Xanthomonas campestris attenuates virulence by sensing light through a bacteriophytochrome photoreceptor. EMBO Reports, 17(11), 1565-1577.
http://dx.doi.org/10.15252/embr.201541691
---------- CHICAGO ----------
Bonomi, H.R., Toum, L., Sycz, G., Sieira, R., Toscani, A.M., Gudesblat, G.E., et al. "Xanthomonas campestris attenuates virulence by sensing light through a bacteriophytochrome photoreceptor" . EMBO Reports 17, no. 11 (2016) : 1565-1577.
http://dx.doi.org/10.15252/embr.201541691
---------- MLA ----------
Bonomi, H.R., Toum, L., Sycz, G., Sieira, R., Toscani, A.M., Gudesblat, G.E., et al. "Xanthomonas campestris attenuates virulence by sensing light through a bacteriophytochrome photoreceptor" . EMBO Reports, vol. 17, no. 11, 2016, pp. 1565-1577.
http://dx.doi.org/10.15252/embr.201541691
---------- VANCOUVER ----------
Bonomi, H.R., Toum, L., Sycz, G., Sieira, R., Toscani, A.M., Gudesblat, G.E., et al. Xanthomonas campestris attenuates virulence by sensing light through a bacteriophytochrome photoreceptor. EMBO Rep. 2016;17(11):1565-1577.
http://dx.doi.org/10.15252/embr.201541691