Artículo

Koyunbakan, H.; Pinasco, J.P.; Scarola, C."Energy dependent potential problems for the one dimensional p-Laplacian operator" (2019) Nonlinear Analysis: Real World Applications. 45:285-298
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work we analyze a nonlinear eigenvalue problem for the p-Laplacian operator with zero Dirichlet boundary conditions. We assume that the problem has a potential which depends on the eigenvalue parameter, and we show that, for n big enough, there exists a real eigenvalue λn, and their corresponding eigenfunctions have exactly n nodal domains. We characterize the asymptotic behavior of these eigenvalues, obtaining two terms in the asymptotic expansion of λn in powers of n. Finally, we study the inverse nodal problem in the case of energy dependent potentials, showing that some subset of the zeros of the corresponding eigenfunctions is enough to determine the main term of the potential. © 2018 Elsevier Ltd

Registro:

Documento: Artículo
Título:Energy dependent potential problems for the one dimensional p-Laplacian operator
Autor:Koyunbakan, H.; Pinasco, J.P.; Scarola, C.
Filiación:Firat University, Faculty of Science, Department of Mathematics, Elazig23119, Turkey
Departamento de Matemática, FCEyN, Universidad de Buenos Aires, e IMAS, UBA-CONICET, Ciudad Universitaria, Pabellón I (1428) Buenos Aires, Argentina
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Uruguay, 151 (6300), Santa Rosa, La Pampa, Argentina
Palabras clave:Asymptotic behavior; Eigenvalues; Nodal inverse problem; Asymptotic analysis; Boundary conditions; Inverse problems; Laplace equation; Laplace transforms; Mathematical operators; Asymptotic behaviors; Asymptotic expansion; Dirichlet boundary condition; Eigenvalues; Nonlinear eigenvalue problem; One-dimensional p-Laplacian; P-Laplacian operator; Potential problems; Eigenvalues and eigenfunctions
Año:2019
Volumen:45
Página de inicio:285
Página de fin:298
DOI: http://dx.doi.org/10.1016/j.nonrwa.2018.07.001
Handle:http://hdl.handle.net/20.500.12110/paper_14681218_v45_n_p285_Koyunbakan
Título revista:Nonlinear Analysis: Real World Applications
Título revista abreviado:Nonlinear Anal. Real World Appl.
ISSN:14681218
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14681218_v45_n_p285_Koyunbakan

Referencias:

  • Turner, R.E.L., Some variational principles for a nonlinear eigenvalue problem (1967) J. Math. Anal. Appl., 17, pp. 151-160
  • Weinberger, H.F., On a nonlinear eigenvalue problem (1968) J. Math. Anal. Appl., 21, pp. 506-509
  • Bairamov, E., Cakar, O., Celebi, O., Quadratic pencil of Schrodinger operators with spectral singularities: discrete spectrum and principal functions. (1997) J. Math. Anal. Appl., 216, pp. 303-320
  • Freiling, G., Yurko, V., Inverse Sturm–Liouville Problems and their Applications (2001), p. x+356. , Nova Science Publishers, Inc. Huntington, NY; Gulsen, T., Yilmaz, E., Inverse nodal problem for p-laplacian diffusion equation with polynomially dependent spectral parameter (2016) Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 65, pp. 23-36
  • Chandrasekhar, S., Hydrodynamic Stability (1961), Clarendon Press Oxford; Browne, P.J., Watson, B.A., Oscillation theory for a quadratic eigenvalue problem (2008) Quaest. Math., 31, pp. 345-357
  • Buterin, S.A., Shieh, C.T., Incomplete inverse spectral and nodal problems for differential pencils (2012) Results Math., 62, pp. 167-179
  • Koyunbakan, H., Inverse problem for a quadratic pencil of Sturm–Liouville operator (2011) J. Math. Anal. Appl., 378, pp. 549-554
  • van der Mee, C., Pivovarchik, V., Some properties of the eigenvalues of a Schrödinger equation with energy-dependent potential (2002) Contemp. Math., 307, pp. 305-310
  • Yang, C.-F., Trace formulae for differential pencils with spectral parameter dependent boundary conditions (2014) Math. Methods Appl. Sci., 37, pp. 1325-1332
  • Yang, C.-F., An inverse problem for a differential pencil using nodal points as data (2014) Israel J. Math., 204, pp. 431-446
  • Friedman, A., Shinbrot, M., Nonlinear eigenvalue problems (1968) Acta Math., 121, pp. 77-125
  • Greenberg, L., Babuška, I., A continuous analogue of sturm sequences in the context of Sturm–Liouville equations (1989) SIAM J. Numer. Anal., 26 (4), pp. 920-945
  • Guseinov, G.S., On the spectral analysis of a quadratic pencil of Sturm–Liouville operators (1985) Dokl. Akad. Nauk SSSR, 285. , (Russian). English translation: Soviet Math. Dokl. 32 (1985) 859-862 [Proofs in Guseinov, G Sh. Inverse spectral problems for a quadratic pencil of Sturm–Liouville operators on a finite interval. Spectral theory of operators and its applications, No. 7 (Russian), 51-101, ”Elm” Baku, 1986]
  • Guseinov, G.S., On construction of a quadratic Sturm–Liouville operator pencil from spectral data (2014) Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 40, pp. 203-214
  • Del Pino Manuel, M., Drábek, P., Manásevich, R., The Fredholm alternative at the first eigenvalue for the one-dimensional p-Laplacian (1999) J. Differential Equations, 151, pp. 386-419
  • Drábek, P., Manásevich, R., On the closed solutions to some nonhomogeneous eigenvalue problems with p-Laplacian (1999) Differential. Integr. Equations, 12, pp. 773-788
  • Jaulent, M., Jean, C., The inverse s-wave scattering problem for a class of potentials depending on energy (1972) Comm. Math. Phys., 28, pp. 177-220
  • Jaulent, M., Jean, C., The inverse problem for the one-dimensional Schrodinger equation with an energy-dependent potential. I (1976) Ann. Inst. H. Poincare Sect. A (N.S.), 25, pp. 105-118
  • Jaulent, M., Jean, C., The inverse problem for the one-dimensional Schrodinger equation with an energy-dependent potential. II (1976) Ann. Inst. H. Poincare Sect. A (N.S.), 25, pp. 119-137
  • Hryniv, R., Pronska, N., Inverse spectral problems for energy-dependent Sturm–Liouville equations (2012) Inverse Problems, 28
  • van der Mee, C., Pivovarchik, V., Inverse scattering for a Schrodinger equation with energy dependent potential (2001) J. Math. Phys., 42, pp. 158-181
  • Yang, C.-F., Guo, Y.X., Determination of a differential pencil from interior spectral data (2011) J. Math. Anal. Appl., 375, pp. 284-293
  • Koyunbakan, H., Inverse nodal problem for p-Laplacian energy-dependent Sturm–Liouville equation (2013) Bound. Value Probl., 2013, pp. 1-8
  • Yilmaz, E., Goktas, S., Koyunbakan, H., On the Lipschitz stability of inverse nodal problem for p-Laplacian Schrödinger equation with energy dependent potential (2015) Bound. Value Probl., 2015 (32), pp. 1-8
  • McLaughlin, J.R., Inverse spectral theory using nodal points as data, a uniqueness result (1988) J. Differential Equations, 73, pp. 354-362
  • Chen, X., Cheng, Y.-H., Law, C.-K., A Tikhonov regularization for the inverse nodal problem for p-Laplacian (2012) J. Math. Anal. Appl., 395, pp. 230-240
  • Hald, O.H., McLaughlin, J.R., Solution of inverse nodal problems (1989) Inverse Problems, 5, pp. 307-347
  • Hald, O.H., McLaughlin, J.R., Inverse problems: recovery of BV coefficients from nodes (1998) Inverse Problems, 14, pp. 245-273
  • Law, C.K., Lian, W.-C., Wei-Cheng, Wang, W.-C., The inverse nodal problem and the Ambarzumyan problem for the p-Laplacian (2009) Proc. Roy. Soc. Edinburgh Sect. A, 139, pp. 1261-1273
  • Shen, C.-L., On the nodal sets of the eigenfunctions of the string equation (1988) SIAM J. Math. Anal., 19, pp. 1419-1424
  • Martínez-Finkelshtein, A., Martínez-González, P., Zarzo, A., WKB approach to zero distribution of solutions of linear second order differential equations (2002) J. Comput. Appl. Math., 145, pp. 167-182
  • Pinasco, J.P., Scarola, C., A nodal inverse problem for second order Sturm–Liouville operators with indefinite weights (2015) Appl. Math. Comput., 256, pp. 819-830
  • Pinasco, J.P., Scarola, C., A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line (2016) J. Differential Equations, 261, pp. 1000-1016
  • Chadan, K., Colton, D., Paivarinta, L., Rundell, W., (1997) An Introduction To Inverse Scattering and Inverse Spectral Problems with a Foreword By Margaret Cheney, SIAM Monographs on Mathematical Modeling and Computation, p. x+198. , Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA
  • Fernández Bonder, J., Pinasco, J.P., Asymptotic Behavior of the Eigenvalues of the One Dimensional Weighted p- Laplace Operator (2003) Ark. Mat., 41, pp. 267-280
  • Walter, W., Sturm–Liouville theory for the radial operator (1998) Math. Z., 227, pp. 175-185

Citas:

---------- APA ----------
Koyunbakan, H., Pinasco, J.P. & Scarola, C. (2019) . Energy dependent potential problems for the one dimensional p-Laplacian operator. Nonlinear Analysis: Real World Applications, 45, 285-298.
http://dx.doi.org/10.1016/j.nonrwa.2018.07.001
---------- CHICAGO ----------
Koyunbakan, H., Pinasco, J.P., Scarola, C. "Energy dependent potential problems for the one dimensional p-Laplacian operator" . Nonlinear Analysis: Real World Applications 45 (2019) : 285-298.
http://dx.doi.org/10.1016/j.nonrwa.2018.07.001
---------- MLA ----------
Koyunbakan, H., Pinasco, J.P., Scarola, C. "Energy dependent potential problems for the one dimensional p-Laplacian operator" . Nonlinear Analysis: Real World Applications, vol. 45, 2019, pp. 285-298.
http://dx.doi.org/10.1016/j.nonrwa.2018.07.001
---------- VANCOUVER ----------
Koyunbakan, H., Pinasco, J.P., Scarola, C. Energy dependent potential problems for the one dimensional p-Laplacian operator. Nonlinear Anal. Real World Appl. 2019;45:285-298.
http://dx.doi.org/10.1016/j.nonrwa.2018.07.001