Artículo

Segura, A.M.; Calliari, D.; Kruk, C.; Fort, H.; Izaguirre, I.; Saad, J.F.; Arim, M. "Metabolic dependence of phytoplankton species richness" (2015) Global Ecology and Biogeography. 24(4):472-482
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Aim: To analyse the dependence of phytoplankton species richness on temperature within the framework of the metabolic theory of ecology (MTE) with explicit consideration of its assumptions and predictions. Location: Lakes from the Southern Hemisphere - South America (Argentinean Pampa to Tierra del Fuego) and Antarctica - and Northern Hemisphere - North America (USA) and Europe (Denmark to Spain). Methods: The MTE proposes that natural logarithm of species richness and the inverse of temperature are linearly related, with a slope equal to the activation energy. The MTE assumes that the total community abundance, average body size and per species average community productivity are independent of the temperature. These predictions and assumptions are here evaluated using c. 660 phytoplankton lake communities and a literature review of 281 experimental measures of growth rate. Linear, curvilinear and segmented models were contrasted with empirical trends. Results: Temperature-richness relationships showed a three-phase segmented form in two of the three continents. Generally, at temperatures above 17°C and below 11°C there was a weak relationship or none. Intermediate temperatures showed the expected positive association with richness, but with steeper slopes (c. 1) than MTE expectations (c. 0.3). Statistical models including total community abundance and average body size explained up to 64% of the variance in richness. Main conclusions: In its original formulation the MTE is not a satisfactory model for large-scale richness patterns in phytoplankton. However, the MTE is able to better explain richness patterns when the temperature dependence of abundances and body size are explicitly accounted for in the model. These temperature dependences improve the performance of MTE predictions but question the interpretation of the richness-temperature slope as a measure of activation energy. The balance among activation energy, abundance and body size produced the observed segmented pattern in temperature-richness relationships for lake phytoplankton. © 2015 John Wiley & Sons Ltd.

Registro:

Documento: Artículo
Título:Metabolic dependence of phytoplankton species richness
Autor:Segura, A.M.; Calliari, D.; Kruk, C.; Fort, H.; Izaguirre, I.; Saad, J.F.; Arim, M.
Filiación:Facultad de Ciencias y Centro Universitario Regional Este (CURE), Universidad de la República, Rocha, Uruguay
Ecología Funcional de Sistemas Acuáticos, CSIC, Universidad de la República, Rocha, Uruguay
Facultad de Ciencias, Universidad de la República, Limnología, Uruguay
Instituto de Física, Grupo de sistemas complejos, Universidad de la República, Montevideo, Uruguay
Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET - UBA), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Ecología y Evolución, Facultad de Ciencias y Centro Universitario Regional Este (CURE), Universidad de la República, Maldonado, Uruguay
Palabras clave:America; Antarctica; Europe; Lakes; Metabolic theory of ecology; Phytoplankton biodiversity; biodiversity; body size; growth rate; lake ecosystem; phytoplankton; relative abundance; species richness; temperature effect; Antarctica; Argentina; Denmark; Spain; Tierra del Fuego [(PRV) Argentina]; United States
Año:2015
Volumen:24
Número:4
Página de inicio:472
Página de fin:482
DOI: http://dx.doi.org/10.1111/geb.12258
Título revista:Global Ecology and Biogeography
Título revista abreviado:Global Ecol. Biogeogr.
ISSN:1466822X
CODEN:GEBIF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1466822X_v24_n4_p472_Segura

Referencias:

  • Algar, A.C., Kerr, J.T., Currie, D.J., A test of metabolic theory as the mechanism underlying broad-scale species-richness gradients (2006) Global Ecology and Biogeography, 16, pp. 170-178
  • Allen, A.P., Brown, J.H., Gillooly, J.F., Global biodiversity, biochemical kinetics, and the energetic-equivalence rule (2002) Science, 297, pp. 1545-1548
  • Allen, A.P., Gillooly, J.F., Brown, J.H., Recasting the species-energy hypothesis: the different roles of kinetic and potential energy in regulating biodiversity (2007) Scaling biodiversity, pp. 283-299. , (ed. by D.M. Storch, P.A. Marquet and J.H. Brown) - Cambridge University Press, Cambridge
  • Allende, L., Tell, G., Zagarese, H., Torremorell, A., Pérez, G., Bustingorry, J., Escaray, R., Izaguirre, I., Phytoplankton and primary production in clear-vegetated, inorganic-turbid and algal-turbid shallow lakes from the pampa plain (Argentina) (2009) Hydrobiologia, 624, pp. 45-60
  • Angilletta, J.M.J., (2009) Thermal adaptation: a theoretical and empirical synthesis, , Oxford University Press, Oxford
  • Arim, M., Bozinovic, F., Marquet, A., On the relationship between trophic position, body mass and temperature: reformulating the energy limitation hypothesis (2007) Oikos, 116, pp. 1524-1530
  • Brown, J.H., Why are there so many species in the tropics? (2014) Journal of Biogeography, 41, pp. 8-22
  • Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., West, G.B., Toward a metabolic theory of ecology (2004) Ecology, 85, pp. 1771-1789
  • Burnham, K.P., Anderson, D.R., (2002) Model selection and multimodel inference: a practical information-theoretic approach, , 2nd edn. Springer-Verlag, New York
  • Cassemiro, F.A.S., Diniz-Filho, J.A.F., Deviations from predictions of the metabolic theory of ecology can be explained by violations of assumptions (2010) Ecology, 91, pp. 3729-3738
  • de Castro, F., Gaedke, U., The metabolism of lake plankton does not support the metabolic theory of ecology (2008) Oikos, 117, pp. 1218-1226
  • Dell, A.I., Pawara, S., Savage, V.M., Systematic variation in the temperature dependence of physiological and ecological traits (2011) Proceedings of the National Academy of Sciences of the United States of America, 108, pp. 10591-10596
  • Fuhrman, J.A., Steele, J.A., Hewson, I., Schwalbach, M.S., Brown, M.V., Green, J.L., Brown, J.H., A latitudinal diversity gradient in planktonic marine bacteria (2008) Proceedings of the National Academy of Sciences of the United States of America, 105, pp. 7774-7778
  • Green, J.L., Bohannan, B.J.M., Whitaker, R.J., Microbial biogeography: from taxonomy to traits (2008) Science, 320, pp. 1039-1042
  • Hawkins, B.A., Albuquerque, F.S., Araujo, M.B., A global evaluation of metabolic theory as an explanation for terrestrial species richness gradients (2007) Ecology, 88, pp. 1877-1888
  • Hessen, D.O., Bakkestuen, V., Walseng, B., Energy input and zooplankton species richness (2007) Ecography, 30, pp. 749-758
  • Hillebrand, H., On the generality of the latitudinal diversity gradient (2004) The American Naturalist, 163, pp. 192-210
  • Izaguirre, I., Allende, L., Escaray, R., Bustingorry, J., Pérez, G., Tell, G., Comparison of morpho-functional phytoplankton classifications in human-impacted shallow lakes with different stable states (2012) Hydrobiologia, 698, pp. 203-216
  • Karasov, W.H., Martínez del Rio, C., (2007) Physiological ecology: how animals process energy, nutrients, and toxins, , Princeton University Press, Princeton, NJ
  • Knies, J.L., Kingsolver, J.G., Erroneous Arrhenius: modified Arrhenius model best explains the temperature dependence of ectotherm fitness (2010) The American Naturalist, 176, pp. 227-233
  • Kruk, C., Huszar, V.L.M., Peeters, E.T.H.M., Bonilla, S., Costa, L., Lürling, M., Reynolds, C.S., Scheffer, M., A morphological classification capturing functional variation in phytoplankton (2010) Freshwater Biology, 55, pp. 614-627
  • Kruk, C., Segura, A.M., Peeters, E.T.H., Huszar, V.L.M., Costa, L.S., Kosten, S., Lacerot, G., Scheffer, M., Phytoplankton species predictability increases towards warmer regions (2012) Limnology and Oceanography, 57, pp. 1126-1135
  • Litchman, E., Phytoplankton (2012) Metabolic ecology: a scaling approach, pp. 154-163. , ed. by R.M. Sibly, J.H. Brown and A. Kodric-Brown) - John Wiley & Sons, Chichester
  • Marañón, E., Inter-specific scaling of phytoplankton production and cell size in the field (2008) Journal of Plankton Research, 30, pp. 157-163
  • Markager, S., Vincent, W.F., Tang, E.P.Y., Carbon fixation in high Arctic lakes: implications of low temperatures for photosynthesis (1999) Limnology and Oceanography, 44, pp. 597-607
  • Martiny, J.B.H., Bohannan, B.J.M., Brown, J.H., Colwell, R.K., Fuhrman, J.A., Green, J.L., Horner-Devine, M.C., Staley, J.T., Microbial biogeography: putting microorganisms on the map (2006) Nature Reviews Microbiology, 4, pp. 102-112
  • Mittelbach, G.G., Schemske, D.W., Cornell, H.V., Allen, A.P., Brown, J.M., Bush, M.B., Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography (2007) Ecology Letters, 10, pp. 315-331
  • Muggeo, V.M.R., Estimating regression models with unknown break-points (2003) Statistics in Medicine, 22, pp. 3055-3071
  • Muggeo, V.M.R., segmented: an R package to fit regression models with broken-line relationships (2008), 8, pp. 20-25. , R News; Muylaert, K., Perez-Martinez, C., Sanchez-Castillo, P., Lauridsen, T.L., Vanderstukken, M., Declerck, S.A.J., Van der Gucht, K., Vyverman, W., Influence of nutrients, submerged macrophytes and zooplankton grazing on phytoplankton biomass and diversity along a latitudinal gradient in Europe (2010) Hydrobiologia, 653, pp. 79-90
  • Pinel-Alloul, B., André, A., Legendre, P., Cardille, J.A., Patalas, K., Salki, A., Large-scale geographic patterns of diversity and community structure of pelagic crustacean zooplankton in Canadian lakes (2013) Global Ecology and Biogeography, 22, pp. 784-795
  • Reynolds, C.S., (1984) The ecology of freshwater phytoplankton, , Cambridge University Press, Cambridge
  • Rohde, K., Latitudinal gradients in species diversity: the search for the primary cause (1992) Oikos, 65, pp. 514-527
  • Schiaffino, M.R., Unrein, F., Gasol, J.M., Massana, R., Balagué, V., Izaguirre, I., Bacterial community structure in a latitudinal gradient of lakes: the roles of spatial versus environmental factors (2011) Freshwater Biology, 56, pp. 1973-1991
  • Segura, A.M., Milessi, A.C., Vogler, R., Galván-Magaña, F., Muggeo, V.M.R., The determination of maturity stages in male elasmobranchs (Chondrichthyes) using a segmented regression of clasper length on total length (2013) Canadian Journal of Fisheries and Aqcuatic Sciences, 70, pp. 830-833
  • Šímová, I., Storch, D., Keil, P., Boyle, B., Phillips, O.L., Enquist, B.J., Global species-energy relationship in forest plots: role of abundance, temperature and species climatic tolerances (2011) Global Ecology and Biogeography, 20, pp. 842-856
  • Stomp, M., Huisman, J., Mittelbach, G.G., Litchman, E., Klausmeier, C.A., Large-scale biodiversity patterns in freshwater phytoplankton (2011) Ecology, 92, pp. 2096-2107
  • Storch, D., Biodiversity and its energetic and thermal controls (2012) Metabolic ecology: a scaling approach, pp. 120-131. , ed. by R.M. Sibly, J.H. Brown and A. Kodric-Brown) - John Wiley Sons, Chichester
  • Taylor, W.D., Williams, L.R., Hern, S.C., Lambou, V.W., Morris, F.A., Morris, M.K., (1979) Phytoplankton water quality relationships in U.S. lakes. Part I: methods, rationale, and data limitations, pp. 3-79. , EPA-600/3-79-021 - Environmental Protection Agency, Washington, DC
  • Tell, G., Izaguirre, I., Allende, L., Diversity and geographical distribution of Chlorococcales (Chlorophyceae) in contrasting lakes along a latitudinal transect in Argentinean Patagonia (2011) Biodiversity and Conservation, 20, pp. 703-727
  • Toms, J.D., Lesperance, M.L., Piecewise regression: a tool for identifying ecological thresholds (2008) Ecology, 84, pp. 2034-2041
  • Utermöhl, H., Zur Vervollkomnung der quantitativen Phytoplankton-Methodik (1958) Mitteilungen. Internationale Vereiningung fuer Theoretische und Angewandte Limnologie, 9, pp. 1-38
  • Wang, Z., Brown, J.H., Tang, Z., Fang, F., Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America (2009) Proceedings of the National Academy of Sciences of the United States of America, 106, pp. 13388-13392
  • Willig, M.R., Kaufman, D.M., Stevens, R.D., Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis (2003) Annual Review of Ecology, Evolution, and Systematics, 34, pp. 273-309

Citas:

---------- APA ----------
Segura, A.M., Calliari, D., Kruk, C., Fort, H., Izaguirre, I., Saad, J.F. & Arim, M. (2015) . Metabolic dependence of phytoplankton species richness. Global Ecology and Biogeography, 24(4), 472-482.
http://dx.doi.org/10.1111/geb.12258
---------- CHICAGO ----------
Segura, A.M., Calliari, D., Kruk, C., Fort, H., Izaguirre, I., Saad, J.F., et al. "Metabolic dependence of phytoplankton species richness" . Global Ecology and Biogeography 24, no. 4 (2015) : 472-482.
http://dx.doi.org/10.1111/geb.12258
---------- MLA ----------
Segura, A.M., Calliari, D., Kruk, C., Fort, H., Izaguirre, I., Saad, J.F., et al. "Metabolic dependence of phytoplankton species richness" . Global Ecology and Biogeography, vol. 24, no. 4, 2015, pp. 472-482.
http://dx.doi.org/10.1111/geb.12258
---------- VANCOUVER ----------
Segura, A.M., Calliari, D., Kruk, C., Fort, H., Izaguirre, I., Saad, J.F., et al. Metabolic dependence of phytoplankton species richness. Global Ecol. Biogeogr. 2015;24(4):472-482.
http://dx.doi.org/10.1111/geb.12258