Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Two of the sugars involved in the protection of living organisms, trehalose and sucrose, were employed to analyze the effect of different salts (MgCl2 , CaCl2 , KCl, NaCl) on sugar crystallization kinetics. The conductivity behavior in supercooled aqueous sugar-salt systems was also studied to evaluate the extent of water-salt interactions. Trehalose and sucrose crystallization, evaluated by differential scanning calorimetry (DSC), was delayed by the presence of salt without affecting the glass transition temperature, Tg, of the system. Sugar crystallization rates increased as the temperature increased above Tg. The crystallization kinetics was analyzed using the Johnson-Mehl-Avrami-Kolmogorov equation (JMAK), and it was found that the index n varied from 4 for pure sugars to less than 2 for sugar-MgCl2 mixtures, suggesting that the presence of salts constrained the number of configurations for crystal growth. The electrical conductivity of NaCl and MgCl2 was measured in liquid and supercooled trehalose and sucrose aqueous solutions over a wide range of viscosity to find evidence of preferential solvation in the sugar-water solutions. The results indicated that large positive deviations from the Walden rule occur in these systems, due to the higher tendency of the ions to move in water-rich regions. The observed delayed crystallization of sugar in aqueous solutions containing salt could be attributed to effects on the nucleation mechanism of ion-induced microheterogeneities in the supercooled solutions.

Registro:

Documento: Artículo
Título:Effect of salts on the properties of aqueous sugar systems in relation to biomaterial stabilization: Part 2. Sugar crystallization rate and electrical conductivity behavior
Autor:Longinotti, M.P.; Mazzobre, M.F.; Buera, M.P.; Corti, H.R.; Corti, H.R.
Filiación:Unidad de Actividad Química, Comisión Nacional de Energía Atómica, Avda General Paz 1499, Provincia de Buenos Aires, 1650 San Martín, Argentina
Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científica y Técnicas de la República Argentina (CONICET), Argentina
Palabras clave:calcium chloride; magnesium chloride; potassium chloride; sodium chloride; sucrose; trehalose; water; article; carbohydrate analysis; chemical interaction; crystallization; differential scanning calorimetry; electric conductivity; glass transition temperature; kinetics; solvation; viscosity
Año:2002
Volumen:4
Número:3
Página de inicio:533
Página de fin:540
DOI: http://dx.doi.org/10.1039/b107746e
Título revista:Physical Chemistry Chemical Physics
Título revista abreviado:Phys. Chem. Chem. Phys.
ISSN:14639076
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14639076_v4_n3_p533_Longinotti

Referencias:

  • Carpenter, J.F., Crowe, J.H., (1988) Cryobiology, 25, p. 459
  • Duddu, S.P., Dal Monte, P.R., (1997) Pharm. Res., 14, p. 591
  • Storey, B.T., Noiles, E.E., Thompson, K.A., (1998) Cryobiology, 37, p. 46
  • Buitink, J., Van den Dries, J., Hoekstra, F.A., Alberda, M., Hemminga, M.A., (2000) Biophys. J., 79, p. 1119
  • Uritani, M., Takai, M., Yoshinaga, K., (1995) J. Biochem., 117, p. 774
  • Leslie, S.B., Israeli, E., Ligthart, B., Crowe, J.H., Crowe, L.M., (1995) Appl. Environ. Microbiol., 61, p. 3592
  • Crowe, L.M., Reid, D.S., Crowe, J.H., (1996) Biophys. J., 71, p. 2087
  • Tzannis, S.T., Prestrelski, S.J., (1999) J. Pharm. Sci., 88, p. 360
  • Arakawa, T., Timasheff, S.N., (1982) Biochemistry, 21, p. 6536
  • Colaço, C., Sen, S., Thangavelu, M., Pinder, S., Roser, B., (1992) Bio/Technology, 10, p. 1007
  • Crowe, J.H., Carpenter, J.F., Crowe, L.M., (1998) Annu. Rev. Physiol., 60, p. 73
  • Koster, K.L., Leopold, A.C., (1988) Plant Physiol., 88, p. 829
  • Kreilgaard, L., Frkjaer, S., Flink, J.M., Randolph, T.W., Carpenter, J.F., (1999) J. Pharm. Sci., 88, p. 281
  • Chang, B.S., Beauvais, R.M., Dong, A., Carpenter, J.F., (1996) Arch. Biochem. Biophys, 331, p. 249
  • Sun, W.Q., Leopold, A.C., (1997) Physiol. Plant, 89, p. 767
  • Cardona, S., Schebor, C., Buera, M.P., Chirife, J., (1997) J. Food Sci., 62, p. 105
  • Suzuki, T., Imamura, K., Yamamoto, K., Satoh, T., Okazaki, M., (1997) J. Chem. Eng. Jpn., 30, p. 609
  • Miller, D.P., De Pablo, J.J., Corti, H.R., (1997) Pharm. Res., 14, p. 578
  • Miller, D.P., Anderson, R.E., De Pablo, J.J., (1998) Pharm. Res., 15, p. 1215
  • Mazzobre, M.F., Buera, M.P., (1999) Biochim. Biophys. Acta, 1473, p. 337
  • Mazzobre, M.F., Longinotti, M.P., Corti, H.R., Buera, M.P., (2001) Cryobiology, , in press
  • Arvanitoyanis, I., Blanshard, J., (1994) J. Food Sci., 59, p. 197
  • Kedward, C.J., Macnaughtan, W., Mitchell, J.R., (2000) J. Food Sci., 2, p. 324
  • Johnson, W.A., Mehl, R.F., (1939) Trans. AIME, 135, p. 416
  • Avrami, M., (1939) J. Chem. Phys., 7, p. 1103
  • Kolmogorov, A.N., (1937) Bull. Acad. Sci. USSR (Sci. Mater. Nat.), 3, p. 3551
  • Graydon, J.W., Thorpe, S.J., Kirk, D.W., (1994) J. Non-Cryst. Solids, 175, p. 31
  • Barthel, J., Feuerlein, F., Neueder, R., Wachter, R., (1980) J. Solution Chem., 9, p. 209
  • Barthel, J., Neueder, R., Feuerlein, F., Strasser, F., Iberl, L., (1983) J. Solution Chem., 12, p. 449
  • Shneidman, V.A., Uhlmann, D.R., (1998) J. Chem. Phys., 109, p. 186
  • Avrami, M., (1940) J. Chem. Phys., 8, p. 212
  • Doremus, R.H., (1985) Rates of Phase Transformations, p. 24. , Academic Press, Orlando FL
  • Chvoj, Z., Sestak, J., Triska, A., (1991) Kinetic Phase Diagrams, p. 169. , Elsevier, Amsterdam
  • Ross, Y., Karel, M., (1991) J. Food Sci., 56, p. 1676
  • Petriella, C., Resnik, S., Lozano, R.D., Chirife, J., (1985) J. Food Sci., 50, p. 622
  • Pancoast, H.M., Junk, W.R., (1980) Handbook of Sugars, p. 46. , Avi Pub. Co. Westport CT, 2nd edn
  • Miller, D.P., Conrad, P.B., Fucito, S., Corti, H.R., De Pablo, J.J., (2000) J. Phys. Chem. B, 104, p. 10419
  • Spiro, M., (1973) Organic Solvent Systems, , ed. A.K. Covington and T. Dickinson, Plenum Press, New York, ch. 6
  • Stokes, R.H., (1959) The Structure of Electrolytic Solutions, p. 298. , ed. W.J. Hamer, Wiley, New York
  • Treiner, C., Fuoss, R.M., (1965) J. Phys. Chem., 69, p. 2576
  • Noel, T.R., Parker, R., Ring, S.G., (1996) J. Chem. Soc., Faraday Trans., 92, p. 1921
  • Ehlich, D., Silleuscu, H., (1990) Macromolecules, 23, p. 1600
  • Rössler, E., (1990) Phys. Rev. Lett., 65, p. 1595
  • Ediger, M.D., (2000) Annu. Rev. Phys. Chem., 51, p. 99

Citas:

---------- APA ----------
Longinotti, M.P., Mazzobre, M.F., Buera, M.P., Corti, H.R. & Corti, H.R. (2002) . Effect of salts on the properties of aqueous sugar systems in relation to biomaterial stabilization: Part 2. Sugar crystallization rate and electrical conductivity behavior. Physical Chemistry Chemical Physics, 4(3), 533-540.
http://dx.doi.org/10.1039/b107746e
---------- CHICAGO ----------
Longinotti, M.P., Mazzobre, M.F., Buera, M.P., Corti, H.R., Corti, H.R. "Effect of salts on the properties of aqueous sugar systems in relation to biomaterial stabilization: Part 2. Sugar crystallization rate and electrical conductivity behavior" . Physical Chemistry Chemical Physics 4, no. 3 (2002) : 533-540.
http://dx.doi.org/10.1039/b107746e
---------- MLA ----------
Longinotti, M.P., Mazzobre, M.F., Buera, M.P., Corti, H.R., Corti, H.R. "Effect of salts on the properties of aqueous sugar systems in relation to biomaterial stabilization: Part 2. Sugar crystallization rate and electrical conductivity behavior" . Physical Chemistry Chemical Physics, vol. 4, no. 3, 2002, pp. 533-540.
http://dx.doi.org/10.1039/b107746e
---------- VANCOUVER ----------
Longinotti, M.P., Mazzobre, M.F., Buera, M.P., Corti, H.R., Corti, H.R. Effect of salts on the properties of aqueous sugar systems in relation to biomaterial stabilization: Part 2. Sugar crystallization rate and electrical conductivity behavior. Phys. Chem. Chem. Phys. 2002;4(3):533-540.
http://dx.doi.org/10.1039/b107746e