Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

One of the most influential articles showing the best way to get the absolute values of NMR magnetic shieldings, σ (non-measurables) from both accurate measurements and theoretical calculations, was published a long time ago by Flygare. His model was shown to break down when heavy atoms are involved. This fact motivated the development of new theories of nuclear spin-rotation (SR) tensors, which consider electronic relativistic effects. One was published recently by some of us. In this article we take another step further and propose three different models that generalize Flygare's model. All of them are written using four-component relativistic expressions, though the two-component relativistic SO-S term also appears in one. The first clues for these developments were built from the relationship among σ and the SR tensors within the two-component relativistic LRESC model. Besides, we had to introduce a few other well defined assumptions: (i) relativistic corrections must be included in a way to best reproduce the relationship among the (e-e) term (called "paramagnetic" within the non-relativistic domain) of σ and its equivalent part of the SR tensor, (ii) as happens in Flygare's rule, the shielding of free atoms shall be included to improve accuracy. In the highest accurate model, a new term known as Spin-orbit due to spin, SO-S (in this mechanism the spin-Zeeman Hamiltonian replaces the orbital-Zeeman Hamiltonian), is included. We show the results of the application of those models to halogen containing linear molecules. © 2016 the Owner Societies.

Registro:

Documento: Artículo
Título:Toward an absolute NMR shielding scale using the spin-rotation tensor within a relativistic framework
Autor:Aucar, I.A.; Gomez, S.S.; Giribet, C.G.; Aucar, G.A.
Filiación:Instituto de Modelado e Innovación Tecnológica, CONICET, Departamento de Física, Facultad de Ciencias Exactas y Naturales, UNNE, Avda Libertad 5460, Corrientes, W3404AAS, Argentina
Instituto de Física de Buenos Aires, CONICET, Departamento de Física, Facultad de Ciencias Exactas y Naturales, UBA, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
Año:2016
Volumen:18
Número:34
Página de inicio:23572
Página de fin:23586
DOI: http://dx.doi.org/10.1039/c6cp03355e
Título revista:Physical Chemistry Chemical Physics
Título revista abreviado:Phys. Chem. Chem. Phys.
ISSN:14639076
CODEN:PPCPF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14639076_v18_n34_p23572_Aucar

Referencias:

  • Ramsey, N.F., (1950) Phys. Rev., 78, pp. 699-703
  • Flygare, W.H., (1964) J. Chem. Phys., 41, pp. 793-800
  • Flygare, W.H., (1965) J. Chem. Phys., 42, pp. 1157-1161
  • Flygare, W.H., (1974) Chem. Rev., 74, pp. 653-687
  • Aucar, I.A., Gomez, S.S., Ruiz De Azúa, M.C., Giribet, C.G., (2012) J. Chem. Phys., 136, p. 204119
  • Flygare, W.H., Goodisman, J., (1968) J. Chem. Phys., 49, pp. 3122-3125
  • Visscher, L., Enevoldsen, T., Saue, T., Jensen, H.J.A., Oddershede, J., (1999) J. Comput. Chem., 20, pp. 1262-1273
  • Aucar, G.A., Romero, R.H., Maldonado, A.F., (2010) Int. Rev. Phys. Chem., 29, pp. 1-64
  • Melo, J.I., Ruiz De Azúa, M.C., Giribet, C.G., Aucar, G.A., Romero, R.H., (2003) J. Chem. Phys., 118, pp. 471-486
  • Maldonado, A.F., Aucar, G.A., (2009) Phys. Chem. Chem. Phys., 11, pp. 5615-5627
  • Maldonado, A.F., Gimenez, C.A., Aucar, G.A., (2012) Chem. Phys., 395, pp. 75-81
  • Maldonado, A.F., Aucar, G.A., (2014) J. Phys. Chem. A, 118, pp. 7863-7875
  • Maldonado, A.F., Aucar, G.A., (2015) Chem. Phys., 459, pp. 125-130
  • Aucar, I.A., Gomez, S.S., Melo, J.I., Giribet, C.G., Ruiz De Azúa, M.C., (2013) J. Chem. Phys., 138, p. 134107
  • Xiao, Y., Liu, W., (2013) J. Chem. Phys., 138, p. 134104
  • Aucar, I.A., Gomez, S.S., Giribet, C.G., Ruiz De Azúa, M.C., (2014) J. Chem. Phys., 141, p. 194103
  • Malkin, E., Komorovsky, S., Repisky, M., Demissie, T.B., Ruud, K., (2013) J. Phys. Chem. Lett., 4, pp. 459-463
  • Xiao, Y., Zhang, Y., Liu, W., (2014) J. Chem. Theory Comput., 10, pp. 600-608
  • Demissie, T.B., Jaszuński, M., Komorovsky, S., Repisky, M., Ruud, K., (2015) J. Chem. Phys., 143, p. 164311
  • Demissie, T.B., (2015) Phys. Chem. Chem. Phys., 18, pp. 3112-3123
  • Komorovsky, S., Repisky, M., Malkin, E., Ruud, K., Gauss, J., (2015) J. Chem. Phys., 142, p. 091102
  • Adrjan, B., Makulski, W., Jackowski, K.A., Demissie, T.B., Ruud, K., Antusek, A., Jaszuński, M., (2016) Phys. Chem. Chem. Phys., 18, pp. 16483-16491
  • Saue, T., Visscher, L., Jensen, H.J.Aa., Bast, R., Bakken, V., Dyall, K.G., Dubillard, S., Yamamoto, S., Ab Initio, , http://www.diracprogram.org, DIRAC, a relativistic electronic structure program, Release DIRAC14 (2014), written by, with contributions from, 2014, see
  • Maldonado, A.F., Melo, J.I., Aucar, G.A., (2014) J. Mol. Model., 20, pp. 2417-2432
  • Aucar, G.A., Saue, T., Visscher, L., Jensen, H.J.A., (1999) J. Chem. Phys., 110, pp. 6208-6218
  • Aucar, I.A., Gomez, S.S., Giribet, C.G., Ruiz De Azúa, M.C., (2013) J. Chem. Phys., 139, p. 094112
  • Aucar, G.A., Oddershede, J., (1993) Int. J. Quantum Chem., 47, p. 425
  • Melo, J.I., Ruiz De Azúa, M.C., Giribet, C.G., Aucar, G.A., Provasi, P.F., (2004) J. Chem. Phys., 121, pp. 6798-6808
  • Aucar, I.A., (2015), PhD thesis; Manninen, P., Lantto, P., Vaara, J., Ruud, K., (2003) J. Chem. Phys., 119, pp. 2623-2637
  • Edlund, U., Lejon, T., Pyykko, P., Venkatachalam, T.K., Buncel, E., (1987) J. Am. Chem. Soc., 109, pp. 5982-5985
  • Pyykkö, P., Görling, A., Rösch, N., (1987) Mol. Phys., 61, pp. 195-205
  • Kaupp, M., Malkina, O.L., Malkin, V.G., Pyykkö, P., (1998) Chem.-Eur. J., 4, pp. 118-126
  • Ruiz De Azúa, M.C., Giribet, C.G., Melo, J.I., (2011) J. Chem. Phys., 134, p. 034123
  • http://daltonprogram.org, DALTON, a molecular electronic structure program, Release DALTON13.0, 2013, see; Aidas, K., Angeli, C., Bak, K.L., Bakken, V., Bast, R., Boman, L., Christiansen, O., Ågren, H., The Dalton quantum chemistry program system (2014) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 4, pp. 269-284
  • (1984) Handbook of Chemistry, , The Chemical Society of Japan Kagaku Benran Maruzen Company, Tokyo, 3rd edn, II
  • Huber, K.P., Herzberg, G., (1979) Constants of Diatomic Molecules, , Nostrand Reinhold, New York
  • Dunning, T.H., (1989) J. Chem. Phys., 90, pp. 1007-1023
  • Dyall, K.G., (2006) Theor. Chem. Acc., 115, pp. 441-447
  • Saue, T., Jensen, H.J.A., (2003) J. Chem. Phys., 118, p. 522
  • Illias, M., Saue, T., Enevoldsen, T., Jensen, H.J.A., (2009) J. Chem. Phys., 131, p. 124119
  • Romero, R.H., Gomez, S.S., (2006) Phys. Lett. A, 353, pp. 190-193
  • Komorovský, S., Repiský, M., Malkina, O.L., Malkin, V.G., (2010) J. Chem. Phys., 132, p. 154101
  • Gomez, S.S., Aucar, G.A., (2011) J. Chem. Phys., 134, p. 204314
  • Muenter, J.S., Klemperer, W., (1970) J. Chem. Phys., 52, pp. 6033-6037
  • Klauss, T., Belov, S.P., Winnewisser, G., (1998) J. Mol. Spectrosc., 187, pp. 109-117
  • Van Dijk, F.P., Dymanus, A., (1969) Chem. Phys. Lett., 4, pp. 170-172
  • Van Dijk, F.P., Dymanus, A., (1968) Chem. Phys. Lett., 2, pp. 235-236
  • Fabricant, B., Muenter, J.S., (1977) J. Chem. Phys., 66, pp. 5274-5277
  • Müller, M.S., Gerry, M.C.L., (1995) J. Chem. Phys., 103, pp. 577-583

Citas:

---------- APA ----------
Aucar, I.A., Gomez, S.S., Giribet, C.G. & Aucar, G.A. (2016) . Toward an absolute NMR shielding scale using the spin-rotation tensor within a relativistic framework. Physical Chemistry Chemical Physics, 18(34), 23572-23586.
http://dx.doi.org/10.1039/c6cp03355e
---------- CHICAGO ----------
Aucar, I.A., Gomez, S.S., Giribet, C.G., Aucar, G.A. "Toward an absolute NMR shielding scale using the spin-rotation tensor within a relativistic framework" . Physical Chemistry Chemical Physics 18, no. 34 (2016) : 23572-23586.
http://dx.doi.org/10.1039/c6cp03355e
---------- MLA ----------
Aucar, I.A., Gomez, S.S., Giribet, C.G., Aucar, G.A. "Toward an absolute NMR shielding scale using the spin-rotation tensor within a relativistic framework" . Physical Chemistry Chemical Physics, vol. 18, no. 34, 2016, pp. 23572-23586.
http://dx.doi.org/10.1039/c6cp03355e
---------- VANCOUVER ----------
Aucar, I.A., Gomez, S.S., Giribet, C.G., Aucar, G.A. Toward an absolute NMR shielding scale using the spin-rotation tensor within a relativistic framework. Phys. Chem. Chem. Phys. 2016;18(34):23572-23586.
http://dx.doi.org/10.1039/c6cp03355e