Artículo

Ruiz, G.N.; Bove, L.E.; Corti, H.R.; Loerting, T. "Pressure-induced transformations in LiCl-H2O at 77 K" (2014) Physical Chemistry Chemical Physics. 16(34):18553-18562
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A systematic study of the properties of high-density amorphous ice (HDA) in the presence of increasing amounts of salt is missing, especially because it is challenging to avoid ice crystallization upon cooling the pressurized liquid. In order to be able to study HDA also in the presence of small amounts of salt, we have investigated the transformation behaviour of quenched aqueous LiCl solutions (mole fraction x < 0.25) upon pressurization in a piston-cylinder setup at 77 K. The sample properties were characterized by in situ dilatometry under high pressure conditions and after recovery by ex situ powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC) at ambient pressure. Two regimes can be identified, with a rather sharp switch at about x = 0.12. At x < 0.12 the samples show the phenomenology also known for pure water samples. They are composed mainly of hexagonal ice (Ih) and experience pressure-induced amorphization to HDA at P > 1 GPa. The observed densification is consistent with the idea that a freeze concentrated LiCl solution of x = 0.14 (R = 6) segregates, which transforms to the glassy state upon cooling, and that the densification is only due to the Ih→ HDA transition. Also the XRD patterns and DSC scans are almost unaffected by the presence of the segregated glassy LiCl solution. Upon heating at ambient pressure HDA experiences the polyamorphic transition to low-density amorphous ice (LDA) at ∼120 K, even at x∼ 0.10. Based on the latent heat evolved in the transition we suggest that almost all water in the sample transforms to an LDA-like state, even the water in the vicinity of the ions. The glassy LiCl solution acts as a spectator that does not shift the transformation temperature significantly and experiences a glass-to-liquid transition at ∼140 K prior to the crystallization to cubic ice. By contrast, at x > 0.12 the phenomenology completely changes and is now dominated by the salt. Hexagonal ice no longer forms upon quenching the LiCl solution, but instead LDA forms. A broad pressure-induced transformation at >0.6 GPa can be attributed to the densification of LDA, the glassy LiCl solution and/or glassy hydrates. © the Partner Organisations 2014.

Registro:

Documento: Artículo
Título:Pressure-induced transformations in LiCl-H2O at 77 K
Autor:Ruiz, G.N.; Bove, L.E.; Corti, H.R.; Loerting, T.
Filiación:Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, (1428), Buenos Aires, Argentina
Institute of Physical Chemistry, University of Innsbruck, Innrain 52a, Innsbruck, 6020, Austria
Institut de Minéralogie, Physique des Matériaux, Cosmochimie (IMPMC) - UMR CNRS 7590, UPMC Université P. & M. Curie, Sorbonne Universités, 4 Place Jussieu, Paris, F-75005, France
EPSL, Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, Lausanne, CH-1015, Switzerland
Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avda. General Paz 1499 (1650) San Martín, Buenos Aires, Argentina
Año:2014
Volumen:16
Número:34
Página de inicio:18553
Página de fin:18562
DOI: http://dx.doi.org/10.1039/c4cp01786b
Título revista:Physical Chemistry Chemical Physics
Título revista abreviado:Phys. Chem. Chem. Phys.
ISSN:14639076
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14639076_v16_n34_p18553_Ruiz

Referencias:

  • Debenedetti, P.G., Supercooled and glassy water (2003) J. Phys.: Condens. Matter, 15, p. R1669
  • Loerting, T., Giovambattista, N., Amorphous ices: Experiments, numerical simulations (2006) J. Phys.: Condens. Matter, 18, p. R919
  • Mishima, O., Polyamorphism in water (2010) Proc. Jpn. Acad., Ser. B, 86, p. 165
  • Ball, P., (2004) H2O: A biography of water, , Phoenix, London
  • Loerting, T., Winkel, K., Seidl, M., Bauer, M., Mitterdorfer, C., Handle, P., Salzmann, C., Bowron, D.T., How many amorphous ices are there? (2011) Phys. Chem. Chem. Phys., 13, p. 8783
  • Amann-Winkel, K., Gainaru, C., Nelson, H., Handle, P., Seidl, M., Böhmer, R., Loerting, T., Water’s second glass transition (2013) Proc. Natl. Acad. Sci. U. S. A., 110, p. 17720
  • Angell, C.A., Sare, E.J., Liquid-liquid immiscibility in common aqueous solutions at low temperatures (1968) J. Chem. Phys., 49, p. 4713
  • Angell, C.A., Sare, E.J., Glass Forming Composition Regions and Glass Transition Temperatures for Aqueous Electrolyte Solutions (1970) J. Chem. Phys., 52, p. 1058
  • Kanno, H., Angell, C.A., Homogeneous nucleation and glass formation in aqueous alkaline halide solutions at high pressure (1977) J. Phys. Chem., 81, p. 2639
  • Dupuy, J., Jal, J.F., Ferradou, C., Chieux, P., Wright, A.F., Calemczuk, R., Angell, C.A., Controlled nucleation and quasi-ordered growth of ice crystals from low temperature electrolyte solutions (1982) Nature, 296, p. 138
  • MacFarlane, D.R., Kadlyala, R.K., Angell, C.A., Direct observation of time-temperature-transformation curves for crystallization of ice from solutions by a homogeneous mechanism (1983) J. Phys. Chem., 87, p. 1094
  • Kanno, H., Double glass transitions in aqueous lithium chloride solutions vitrified at high pressures: Evidence for a liquid-liquid immiscibility (1987) J. Phys. Chem., 91, p. 1967
  • Mishima, O., Phase separation in dilute LiCl-H2O solution related to the polyamorphism of liquid water (2007) J. Chem. Phys., 126, p. 244507
  • Bove, L.E., Klotz, S., Philippe, J., Saitta, A.M., Pressure-Induced Polyamorphism in Salty Water (2011) Phys. Rev. Lett., 106, p. 125701
  • Hofer, K., Hallbrucker, A., Mayer, E., Johari, G.P., Vitrified dilute aqueous solutions. 3. Plasticization of water’s hydrogen-bonded network and the glass transition temperature’s minimum (1989) J. Phys. Chem., 93, p. 4674
  • Prevel, B., Jal, J.F., Dupuy-Philon, J., Soper, A.K., Structural characterization of an electrolytic aqueous solution, LiCl-6H2O in the glass, supercooled liquid, and liquid states (1995) J. Chem. Phys., 103, p. 1886
  • Mayer, E., New method for vitrifying water and other liquids by rapid cooling of their aerosols (1985) J. Appl. Phys., 58, p. 663
  • Hofer, K., Astl, G., Mayer, E., Johari, G.P., Vitrified dilute aqueous solutions. 4. Effects of electrolytes and polyhydric alcohols on the glass transition features of hyperquenched aqueous solutions (1991) J. Phys. Chem., 95, p. 10777
  • Winkel, K., Seidl, M., Loerting, T., Bove, L.E., Imberti, S., Molinero, V., Bruni, F., Ricci, M.A., Structural study of low concentration LiCl aqueous solutions in the liquid, supercooled, and hyperquenched glassy states (2011) J. Chem. Phys., 134, p. 24515
  • Leberman, R., Soper, A.K., Effect of high salt concentrations on water structure (1995) Nature, 378, p. 364
  • Suzuki, Y., Tominaga, Y., Polarized Raman spectroscopy study on the solvent state of glassy LiCl aqueous solutions and the state of relaxed high-density amorphous ices (2011) J. Chem. Phys., 134, p. 244511
  • Suzuki, Y., Mishima, O., Raman spectroscopy study of glassy water in dilute lithium chloride aqueous solution vitrified under pressure (2002) J. Chem. Phys., 117, p. 1673
  • Mishima, O., Application of polyamorphism in water to spontaneous crystallization of emulsified LiCl-H2O solution (2005) J. Chem. Phys., 123, p. 154506
  • Mishima, O., Differences between pressure-induced densification of LiCl-H2O glass and the polyamorphic transition of H2O (2011) J. Phys.: Condens. Matter, 21, p. 155105
  • Mishima, O., Melting of the precipitated ice IV in LiCl aqueous solution and polyamorphism of water (2011) J. Phys. Chem. B, 115, p. 14064
  • Mishima, O., The glass - to - liquid transition of the emulsified high - density amorphous ice made by pressure - induced amorphization (2004) J. Chem. Phys., 121, p. 3161
  • Corti, H.R., Nores Pondal, F., Angell, C.A., Heat capacity and glass transition in P2O5-H2O solutions: Support for Mishima’s conjecture on solvent water at low temperature (2011) Phys. Chem. Chem. Phys., 13, p. 19741
  • Corradini, D., Rovere, M., Gallo, P., Structural Properties of High and Low Density Water in a Supercooled Aqueous Solution of Salt (2011) J. Phys. Chem. B, 115, p. 1461
  • Longinotti, P., Carignano, M.A., Szleifer, I., Corti, H.R., Anomalies in supercooled NaCl aqueous solutions: A microscopic perspective (2011) J. Chem. Phys., 134, p. 244510
  • Le, L., Molinero, V., Nanophase segregation in supercooled aqueous solutions and their glasses driven by the polyamorphism of water (2011) J. Phys. Chem. A, 115, p. 5900
  • Bove, L.E., Dreyfus, C., Torre, R., Pick, R.M., Observation of nanophase segregation in LiCl aqueous solutions from transient grating experiments (2013) J. Chem. Phys., 139, p. 44501
  • Kobayashi, M., Tanaka, H., Possible link of the V-shaped phase diagram to the glass-forming ability and fragility in a water-salt mixture (2011) Phys. Rev. Lett., 106, p. 125703
  • Kobayashi, M., Tanaka, H., Relationship between the phase diagram, the glass-forming ability, and the fragility of a water/salt mixture (2011) J. Phys. Chem. B, 115, p. 14077
  • Mamontov, E., Diffusion dynamics of water molecules in a LiCl solution: A low-temperature crossover (2009) J. Phys. Chem. B, 113, p. 14073
  • Mishima, O., Calvert, L.D., Whalley, E., Melting ice I at 77 K and 10 kbar: A new method of making amorphous solids (1984) Nature, 310, p. 393
  • Klotz, S., Straessle, T., Saitta, A.M., Rousse, G., Hamel, G., Nelmes, R.J., Loveday, J.S., Guthrie, M., In situ neutron diffraction studies of high density amorphous ice under pressure (2005) J. Phys.: Condens. Matter, 17, p. S967
  • Monnin, C., Dubois, M., Papaiconomou, N., Simonin, J.P., Thermodynamics of the LiCl + H2O system (2005) J. Chem. Eng. Data, 47, p. 1331
  • Winkel, K., Schustereder, W., Kohl, I., Salzmann, C.G., Mayer, E., Loerting, T., (2007) Isothermal amorphous - amorphous - amorphous transitions in water, Physics and Chemistry of Ice, p. 641. , The Royal Society of Chemistry, Cambridge
  • Loerting, T., Bauer, M., Kohl, I., Watschinger, K., Winkel, K., Mayer, E., Cryoflotation: Densities of amorphous and crystalline ices (2011) J. Phys. Chem. B, 115 (48), p. 14167
  • Conde, M.R., Properties of aqueous solutions of lithium and calcium chlorides: Formulations for use in air conditioning equipment design (2004) Int. J. Therm. Sci., 43, p. 367
  • Elarby-Aouizerat, A., Jal, J.F., Chieux, P., Letoffé, J.M., Claudy, P., Dupuy, J., Metastable crystallization products and metastable phase diagram of the glassy and supercooled aqueous ionic solutions of LiCl (1988) J. Non-Cryst. Solids, 104, p. 203
  • Prevel, B., Dupuy-Phillon, J., Jal, J.F., Legrand, J.F., Chieux, P., Structural relaxation in supercooled glass-forming solutions: A neutron spin-echo study of LiCl, 6 D2O (1994) J. Phys.: Condens. Matter, 6, p. 1279
  • Honnersteid, A., Nuss, J., Muhle, C., Jansen, M., Die Kristallstrukturen der Monohydrate von Lithiumclorid und Lithiumbromid (2003) Z. Anorg. Allg. Chem., 629, p. 312
  • Jal, J.F., Soper, A.K., Carmona, P., Dupuy, L., Microscopic structure of LiCl·6D2O in glassy and liquid phases (1991) J. Phys.: Condens. Matter, 3, p. 551
  • Prevel, B., Jal, J.F., Carmona, P., Dupuy-Philon, J., Soper, A.K., Medium and long range correlations in the electrolyte LiCl-4H2O: Transition to the glass regime (1995) J. Chem. Phys., 103, p. 1897
  • Bullock, G., Molinero, V., Low-density liquid water is the mother of ice: On the relation between mesostructure, thermodynamics and ice crystallization in solutions (2013) Faraday Discuss., 167, p. 371
  • Moran, H.E., Jr., System Lithium Chloride - Water (1956) J. Phys. Chem., 60 (12), p. 1666
  • Handa, Y.P., Mishima, O., Whalley, E., High-density amorphous ice III. Thermal properties (1986) J. Chem. Phys., 84, p. 2766
  • Salzmann, C.G., Kohl, I., Loerting, T., Mayer, E., Hallbrucker, A., The low-temperature dynamics of recovered ice XII as studied by differential scanning calorimetry: A comparison with ice V (2003) Phys. Chem. Chem. Phys., 5, p. 3507
  • Suzuki, Y., Mishima, O., Sudden switchover between the polyamorphic phase separation and the glass - to - liquid transition in glassy LiCl aqueous solutions (2013) J. Chem. Phys., 138, p. 84507
  • Yoshimura, Y., Kanno, H., Pressure-induced amorphization of ice in aqueous LiCl solution (2002) J. Phys.: Condens. Matter, 14, p. 10671

Citas:

---------- APA ----------
Ruiz, G.N., Bove, L.E., Corti, H.R. & Loerting, T. (2014) . Pressure-induced transformations in LiCl-H2O at 77 K. Physical Chemistry Chemical Physics, 16(34), 18553-18562.
http://dx.doi.org/10.1039/c4cp01786b
---------- CHICAGO ----------
Ruiz, G.N., Bove, L.E., Corti, H.R., Loerting, T. "Pressure-induced transformations in LiCl-H2O at 77 K" . Physical Chemistry Chemical Physics 16, no. 34 (2014) : 18553-18562.
http://dx.doi.org/10.1039/c4cp01786b
---------- MLA ----------
Ruiz, G.N., Bove, L.E., Corti, H.R., Loerting, T. "Pressure-induced transformations in LiCl-H2O at 77 K" . Physical Chemistry Chemical Physics, vol. 16, no. 34, 2014, pp. 18553-18562.
http://dx.doi.org/10.1039/c4cp01786b
---------- VANCOUVER ----------
Ruiz, G.N., Bove, L.E., Corti, H.R., Loerting, T. Pressure-induced transformations in LiCl-H2O at 77 K. Phys. Chem. Chem. Phys. 2014;16(34):18553-18562.
http://dx.doi.org/10.1039/c4cp01786b