Artículo

Gonzalez, M.M.; Denofrio, M.P.; García Einschlag, F.S.; Franca, C.A.; Pis Diez, R.; Erra-Balsells, R.; Cabrerizo, F.M. "Determining the molecular basis for the pH-dependent interaction between 2′-deoxynucleotides and 9H-pyrido[3,4-b]indole in its ground and electronic excited states" (2014) Physical Chemistry Chemical Physics. 16(31):16547-16562
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Interaction between norharmane and three different 2′-deoxynucleotides (dNMP) (2′-deoxyguanosine 5′-monophosphate (dGMP), 2′-deoxyadenosine 5′-monophosphate (dAMP) and 2′-deoxycytidine 5′-monophosphate (dCMP)), in aqueous solution, was studied in the ground state by means of UV-vis and 1H-NMR spectroscopy and in the first electronic excited state using steady-state and time-resolved fluorescence spectroscopy. In all cases, the norharmane-dNMP interaction dependence on the pH was examined. Possible mechanisms for the interaction of both ground and electronic excited states of norharmane with nucleotides are discussed. Spectroscopic, molecular modeling and chemometric analysis were performed to further characterize the chemical structure of the complexes formed and to get additional information concerning the interaction between dNMPs and norharmane. © the Partner Organisations 2014.

Registro:

Documento: Artículo
Título:Determining the molecular basis for the pH-dependent interaction between 2′-deoxynucleotides and 9H-pyrido[3,4-b]indole in its ground and electronic excited states
Autor:Gonzalez, M.M.; Denofrio, M.P.; García Einschlag, F.S.; Franca, C.A.; Pis Diez, R.; Erra-Balsells, R.; Cabrerizo, F.M.
Filiación:CIHIDECAR - CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 3p, Buenos Aires, 1428, Argentina
IIB-INTECH (sede Chascomús) - UNSAM-CONICET, Intendente Marino Km 8,2. CC 164, Chascomús, Buenos Aires, 7130, Argentina
INIFTA - CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Casilla de Correo 16 Suc. 4, La Plata, Buenos Aires, 1900, Argentina
CEQUINOR - CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, La Plata, Buenos Aires, 1900, Argentina
Palabras clave:indole derivative; nucleotide; chemical structure; chemistry; pH; procedures; proton nuclear magnetic resonance; spectroscopy; Hydrogen-Ion Concentration; Indoles; Models, Molecular; Nucleotides; Proton Magnetic Resonance Spectroscopy; Spectrum Analysis
Año:2014
Volumen:16
Número:31
Página de inicio:16547
Página de fin:16562
DOI: http://dx.doi.org/10.1039/c4cp01910e
Título revista:Physical Chemistry Chemical Physics
Título revista abreviado:Phys. Chem. Chem. Phys.
ISSN:14639076
CAS:Indoles; Nucleotides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14639076_v16_n31_p16547_Gonzalez

Referencias:

  • Mori, T., Nakagawa, A., Kobayashi, N., Hashimoto, M.W., Wakabayashi, K., Shimoi, K., Kinae, N., (1998) J. Radiat. Res., 39, pp. 21-33
  • Shimoi, K., Kawabata, H., Tomita, I., (1992) Mutat. Res., Fundam. Mol. Mech. Mutagen., 268, pp. 287-295
  • Gonzalez, M.M., Pellon-Maison, M., Ales-Gandolfo, M.A., Gonzalez-Baró, M.R., Erra-Balsells, R., Cabrerizo, F.M., (2010) Org. Biomol. Chem., 8, pp. 2543-2552
  • Gonzalez, M.M., Vignoni, M., Pellon-Maison, M., Ales-Gandolfo, M.A., Gonzalez-Baro, M.R., Erra-Balsells, R., Epe, B., Cabrerizo, F.M., (2012) Org. Biomol. Chem., 10, pp. 1807-1819
  • Vignoni, M., Rasse-Suriani, F.A.O., Butzbach, K., Erra-Balsells, R., Epe, B., Cabrerizo, F.M., (2013) Org. Biomol. Chem., 11, pp. 5300-5309
  • Gonzalez, M.M., Rasse-Suriani, F.A.O., Franca, C.A., Pis Diez, R., Gholipour, Y., Nonami, H., Erra-Balsells, R., Cabrerizo, F.M., (2012) Org. Biomol. Chem., 10, pp. 9359-9372
  • Gonzalez, M.M., Arnbjerg, J., Paula Denofrio, M., Erra-Balsells, R., Ogilby, P.R., Cabrerizo, F.M., (2009) J. Phys. Chem. A, 113, pp. 6648-6656
  • Gonzalez, M.M., Salum, M.L., Gholipour, Y., Cabrerizo, F.M., Erra-Balsells, R., (2009) Photochem. Photobiol. Sci., 8, pp. 1139-1149
  • Cabrerizo, F.M., Arnbjerg, J., Denofrio, M.P., Erra-Balsells, R., Ogilby, P.R., (2010) ChemPhysChem, 11, pp. 796-798
  • Varela, A.P., Burrows, H.D., Douglas, P., da Graça Miguel, M., (2001) J. Photochem. Photobiol., A, 146, pp. 29-36
  • Tapia, M.J., Reyman, D., Viñas, M.H., Arroyo, A., Poyato, J.M.L., (2003) J. Photochem. Photobiol., A, 156, pp. 1-7
  • Krishnamurthy, M., Dogra, S.K., (1986) J. Chem. Soc., Perkin Trans. 2, pp. 1247-1251
  • Torrent, A.O., Vert, F.T., Sanchez, I.Z., Casamayor, P.M., (1987) J. Photochem., 37, pp. 109-116
  • Draxler, S., Lippitsch, M.E., (1993) J. Phys. Chem., 97, pp. 11493-11496
  • Sakurovs, R., Ghiggino, K.P., (1982) J. Photochem., 18, pp. 1-8
  • Ghiggino, K.P., Skilton, P.F., Thistlethwaite, P.J., (1985) J. Photochem., 31, pp. 113-121
  • Wolfbeis, O.S., Fürlinger, E., Wintersteiger, R., (1982) Monatsh. Chem., 113, pp. 509-517
  • Tomas Vert, F., Zabala Sanchez, I., Olba Torrent, A., (1983) J. Photochem., 23, pp. 355-368
  • Tomas Vert, F., Zabala Sanchez, I., Olba Torrent, A., (1984) J. Photochem., 26, pp. 285-294
  • Alomar, M.L., Gonzalez, M.M., Erra-Balsells, R., Cabrerizo, F.M., (2014) J. Photochem. Photobiol., B, pp. 26-27
  • Balón, M., Muñoz, M.A., Carmona, C., Guardado, P., Galán, M., (1999) Biophys. Chem., 80, pp. 41-52
  • García-Zubiri, I.X., Burrows, H.D., Seixas De Melo, J.S., Monteserín, M., Arroyo, A., Tapia, M.J., (2008) J. Fluoresc., 18, pp. 961-972
  • Miskolczy, Z., Megyesi, M., Biczók, L., Görner, H., (2011) Photochem. Photobiol. Sci., 10, pp. 592-600
  • Kim, B.S., Lee, J.Y., (2013) Org. Electron., 14, pp. 3024-3029
  • Lee, C.W., Im, Y., Seo, J.-A., Lee, J.Y., (2013) Org. Electron., 14, pp. 2687-2691
  • Glowacki, E.D., Irimia-Vladu, M., Bauer, S., Sariciftci, N.S., (2013) J. Mater. Chem. B, 1, pp. 3742-3753
  • Danyluk, S.S., (1968) Biochemistry, 7, pp. 1038-1043
  • Reyman, D., Viñas, M.H., Tardajos, G., Mazario, E., (2012) J. Phys. Chem. A, 116, pp. 207-214
  • Norharmane is a good model compound for aromatic βCs in general due to its chemical structure (see Fig. 1). All full aromatic βCs possess a norharmane-like skeleton moiety, and the difference between them is the nature and position of the substituents; Salomaa, P., Schaleger, L.L., Long, F.A., (1964) J. Am. Chem. Soc., 86, pp. 1-7
  • García Einschlag, F., (2005) Kinesim, v. 9.5, multipurpose program for kinetics and photochemistry (Copyright No. 395814), , INIFTA, Argentina
  • Ruckebusch, C., Aloïse, S., Blanchet, L., Huvenne, J.P., Buntinx, G., (2008) Chemom. Intell. Lab. Syst., 91, pp. 17-27
  • Tauler, R., (1995) Chemom. Intell. Lab. Syst., 30, pp. 133-146
  • Goez, M., Sartorius, I., (1993) J. Am. Chem. Soc., 115, pp. 11123-11133
  • Blanco, M., Peinado, A.C., Mas, J., (2005) Anal. Chim. Acta, 544, pp. 199-205
  • Meloun, M., Čapek, J., Mikšík, P., Brereton, R.G., (2000) Anal. Chim. Acta, 423, pp. 51-68
  • de Juan, A., Tauler, R., (2003) Anal. Chim. Acta, 500, pp. 195-210
  • Gemperline, P.J., Cash, E., (2003) Anal. Chem., 75, pp. 4236-4243
  • Garrido, M., Lázaro, I., Larrechi, M.S., Rius, F.X., (2004) Anal. Chim. Acta, 515, pp. 65-73
  • Note that the lowest detection limit of our fluorescence set-up is 100 ps. Therefore, emitting species with lifetimes shorter than the above limit cannot be detected; Reuben, J., (1973) J. Am. Chem. Soc., 95, pp. 3534-3540
  • Gaggelli, E., D’Amelio, N., Gaggelli, N., Valensin, G., (2000) Eur. J. Inorg. Chem., pp. 1699-1706
  • Vainio, M.J., Johnson, M.S., (2007) J. Chem. Inf. Model., 47, pp. 2462-2474
  • Stewart, J.J.P., (2008) Stewart Computational Chemistry, , http://OpenMOPAC.net, MOPAC2009 Colorado Springs, CO, USA
  • Carmona, C., Galan, M., Angulo, G., Munoz, M.A., Guardado, P., Balon, M., (2000) Phys. Chem. Chem. Phys., 2, pp. 5076-5083
  • Despite the concept of π-stacking is still controversial and a more general expression would be “non-covalent dispersion interaction”, taking into account the results of section “Molecular modeling”, we will refer to it as π-stacking; Results obtained for norharmane-dAMP system are shown with comparative purpose, and were already published ref. 6; Neurohr, K.J., Mantsch, H.H., (1979) Can. J. Chem., 57, pp. 1986-1994
  • Tribolet, R., Sigel, H., (1987) Biophys. Chem., 27, pp. 119-130
  • Grimme, S., (2008) Angew. Chem., Int. Ed., 47, pp. 3430-3434
  • Petroselli, G., Dántola, M.L., Cabrerizo, F.M., Lorente, C., Braun, A.M., Oliveros, E., Thomas, A.H., (2009) J. Phys. Chem. A, 113, pp. 1794-1799
  • Note the fast protonation of the excited stated of the neutral form that takes place in aqueous environments

Citas:

---------- APA ----------
Gonzalez, M.M., Denofrio, M.P., García Einschlag, F.S., Franca, C.A., Pis Diez, R., Erra-Balsells, R. & Cabrerizo, F.M. (2014) . Determining the molecular basis for the pH-dependent interaction between 2′-deoxynucleotides and 9H-pyrido[3,4-b]indole in its ground and electronic excited states. Physical Chemistry Chemical Physics, 16(31), 16547-16562.
http://dx.doi.org/10.1039/c4cp01910e
---------- CHICAGO ----------
Gonzalez, M.M., Denofrio, M.P., García Einschlag, F.S., Franca, C.A., Pis Diez, R., Erra-Balsells, R., et al. "Determining the molecular basis for the pH-dependent interaction between 2′-deoxynucleotides and 9H-pyrido[3,4-b]indole in its ground and electronic excited states" . Physical Chemistry Chemical Physics 16, no. 31 (2014) : 16547-16562.
http://dx.doi.org/10.1039/c4cp01910e
---------- MLA ----------
Gonzalez, M.M., Denofrio, M.P., García Einschlag, F.S., Franca, C.A., Pis Diez, R., Erra-Balsells, R., et al. "Determining the molecular basis for the pH-dependent interaction between 2′-deoxynucleotides and 9H-pyrido[3,4-b]indole in its ground and electronic excited states" . Physical Chemistry Chemical Physics, vol. 16, no. 31, 2014, pp. 16547-16562.
http://dx.doi.org/10.1039/c4cp01910e
---------- VANCOUVER ----------
Gonzalez, M.M., Denofrio, M.P., García Einschlag, F.S., Franca, C.A., Pis Diez, R., Erra-Balsells, R., et al. Determining the molecular basis for the pH-dependent interaction between 2′-deoxynucleotides and 9H-pyrido[3,4-b]indole in its ground and electronic excited states. Phys. Chem. Chem. Phys. 2014;16(31):16547-16562.
http://dx.doi.org/10.1039/c4cp01910e