Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The development of soft bioelectronic interfaces with accurate compositional and topological control of the supramolecular architecture attracts intense interest in the fast-growing field of bioelectronics and biosensing. The present study explores the recognition-driven layer-by-layer assembly of glycoenzymes onto electrode surfaces. The design of the multi-protein interfacial architecture is based on the multivalent supramolecular carbohydrate-lectin interactions between redox glycoproteins and concanavalin A (Con A) derivatives. Specifically, [Os(bpy) 2 Clpy] 2+ -tagged Con A (Os-Con A) and native Con A were used to direct the assembly of horseradish peroxidase (HRP) and glucose oxidase (GOx) in a stepwise topologically controlled procedure. In our designed configuration, GOx acts as the biorecognition element to glucose stimulus, while HRP acts as the transducing element. Surface plasmon resonance (SPR) spectroscopy and quartz crystal microbalance with dissipation (QCM-D) results are combined to give a close representation of the protein surface coverage and the content of water in the protein assembly. The characterization is complemented with in situ atomic force microscopy (AFM) to give a topographical description of the layers assemblage. Electrochemical (EC) techniques were used to characterize the functional features of the spontaneously self-assembled biohybrid architecture, showing that the whole system presents efficient electron transfer and mass transport processes being able to transform micromolar glucose concentration into electrical information. In this way the combination of the electroactive and nonelectroactive Con A provides an efficient strategy to control the position and composition of the protein layers via recognition-driven processes, which defines its sensitivity toward glucose. Furthermore, the incorporation of dextran as a permeable interlayer able to bind Con A promotes the physical separation of the biochemical and transducing processes, thus enhancing the magnitude of the bioelectrochemical signal. We consider that these results are relevant for the nanoconstruction of functional biointerfaces provided that our experimental evidence reveals the possibility of locally addressing recognition, transduction and amplification elements in interfacial ensembles via LbL recognition-driven processes. © 2012 the Owner Societies.

Registro:

Documento: Artículo
Título:Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: A biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces
Autor:Pallarola, D.; Bildering, C.V.; Pietrasanta, L.I.; Queralto, N.; Knoll, W.; Battaglini, F.; Azzaroni, O.
Filiación:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, CONICET, CC 16 Suc. 4, 1900 La Plata, Argentina
Centro de Microscopías Avanzadas (CMA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 1, Buenos Aires C1428EHA, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1033AAJ, Argentina
Max-Planck-Intitut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
Austrian Institute of Technology (AIT), Donau-City-Strasse 1, 1220 Vienna, Austria
INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina
Palabras clave:concanavalin A; dextran; glucose; glucose oxidase; gold; horseradish peroxidase; water; article; chemistry; electrochemical analysis; electrode; genetic procedures; metabolism; oxidation reduction reaction; protein binding; quartz crystal microbalance; surface plasmon resonance; surface property; Biosensing Techniques; Concanavalin A; Dextrans; Electrochemical Techniques; Electrodes; Glucose; Glucose Oxidase; Gold; Horseradish Peroxidase; Oxidation-Reduction; Protein Binding; Quartz Crystal Microbalance Techniques; Surface Plasmon Resonance; Surface Properties; Water
Año:2012
Volumen:14
Número:31
Página de inicio:11027
Página de fin:11039
DOI: http://dx.doi.org/10.1039/c2cp41225j
Título revista:Physical Chemistry Chemical Physics
Título revista abreviado:Phys. Chem. Chem. Phys.
ISSN:14639076
CODEN:PPCPF
CAS:concanavalin A, 11028-71-0; dextran, 87915-38-6, 9014-78-2; glucose, 50-99-7, 84778-64-3; glucose oxidase, 9001-37-0; gold, 7440-57-5; water, 7732-18-5; Concanavalin A, 11028-71-0; Dextrans, 9004-54-0; Glucose, 50-99-7; Glucose Oxidase, 1.1.3.4; Gold, 7440-57-5; Horseradish Peroxidase, 1.11.1.-; Water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14639076_v14_n31_p11027_Pallarola

Referencias:

  • Decher, G., (2002) Multilayer Thin Films, , ed. G. Decher and J. B. Schlenoff, Wiley-VCH, Weinheim, ch. 1, 1-46
  • Shia, X., Shen, M., Möhwald, H., (2004) Prog. Polym. Sci., 29, p. 987
  • Ariga, K., Ji, Q., Hill, J.P., Vinu, A., (2009) Soft Matter, 5, p. 3562
  • Ariga, K., Hill, J.P., Ji, Q., (2007) Phys. Chem. Chem. Phys., 9, p. 2319
  • Bertrand, P., Jonas, A.M., Laschewsky, A., Legras, R., (2000) Macromol. Rapid Commun., 21, p. 319
  • Decher, G., Hong, J.D., (1991) Ber. Bunsen-Ges., 95, p. 1430
  • Decher, G., Hong, J.D., (1991) Makromol. Chem., Macromol. Symp., 46, p. 321
  • Cao, G., Hong, H.G., Mallouk, T.E., (1992) Acc. Chem. Res., 25, p. 420
  • Stockton, W.B., Rubner, M.F., (1997) Macromolecules, 30, p. 2717
  • Wang, L., Wang, Z.Q., Zhang, X., Shen, J.C., Chi, L.F., Fuchs, H., (1997) Macromol. Rapid Commun., 18, p. 509
  • Liu, Y.L., Bruening, M.L., Bergbreiter, D.E., Crooks, R.M., (1997) Angew. Chem., Int. Ed. Engl., 36, p. 2114
  • Cassier, T., Lowack, K., Decher, G., (1998) Supramol. Sci., 5, p. 309
  • Lvov, Y., Ariga, K., Ichinose, I., Kunitake, T., (1995) J. Am. Chem. Soc., 117, p. 6117
  • Caruso, F., Furlong, N.D., Ariga, K., Ichinose, I., Kunitake, T., (1998) Langmuir, 14, p. 4559
  • Shirman, T., Kaminker, R., Freeman, D., Van Der Boom, M.E., (2011) ACS Nano, 5, p. 6553
  • Li, M., Ishihara, S., Akada, M., Liao, M., Sang, L., Hil, J.P., Krishnan, V., Ariga, K., (2011) J. Am. Chem. Soc., 133, p. 7348
  • Lee, B., Kim, Y., Lee, S., Kim, Y.S., Wang, D., Cho, J., (2010) Angew. Chem., Int. Ed., 49, p. 359
  • Bourdillon, C., Demaille, C., Moiroux, J., Saveant, J.-M., (1994) J. Am. Chem. Soc., 116, p. 10328
  • Anzai, J.-I., Kobayashi, Y., Nakamura, N., Nishimura, M., Hoshi, T., (1999) Langmuir, 15, p. 221
  • Inoue, H., Anzai, J.-I., (2005) Langmuir, 21, p. 8354
  • Sato, K., Naka, Y., Anzai, J.-I., (2007) J. Colloid Interface Sci., 315, p. 396
  • Inoue, H., Sato, K., Anzai, J.-I., (2005) Biomacromolecules, 6, p. 27
  • Ludden, M.J.W., Li, X., Greve, J., Van Amerongen, A., Escalante, M., Subramaniam, V., Reinhoudt, D.N., Huskens, J., (2008) J. Am. Chem. Soc., 130, p. 6964
  • Ling, X.Y., Phang, I.Y., Reinhoudt, D.N., Vancso, G.J., Huskens, J., (2008) Int. J. Mol. Sci., 4, p. 486
  • Ludden, M.J.W., Mulder, A., Tampé, R., Reinhoudt, D.N., Huskens, J., (2007) Angew. Chem., Int. Ed., 46, p. 4104
  • Martin, A.L., Li, B., Gillies, E.R., (2009) J. Am. Chem. Soc., 131, p. 734
  • Schröper, F., Baumann, A., Offenhäuser, A., Mayer, D., (2010) Chem. Commun., 46, p. 5295
  • Lisdat, F., Dronov, R., Möhwald, H., Scheller, F.W., Kurth, D.G., (2009) Chem. Commun., p. 274
  • Dronov, R., Kurth, D.G., Möhwald, H., Scheller, F.W., Lisdat, F., (2008) Angew. Chem., Int. Ed., 47, p. 3000
  • Dronov, R., Kurth, D.G., Möhwald, H., Spricigo, R., Leimkühler, S., Wollenberger, U., Rajagopalan, K.V., Lisdat, F., (2008) J. Am. Chem. Soc., 130, p. 1122
  • Willner, I., Katz, E., (2005) Bioelectronics: From Theory to Applications, , in, ed. I. Willner and E. Katz, Wiley-VCH, Weinheim, ch. 1, 1-13
  • Bartlett, P.N., Toh, C.S., (2004) Biosensors: A Practical Approach, , in, ed. J. Cooper and T. Cass, Oxford University Press, Oxford, ch. 4, 59-96
  • Badia, A., Carlini, R., Fernández, A., Battaglini, F., Mikkelsen, S.R., English, A.M., (1993) J. Am. Chem. Soc., 115, p. 7053
  • Battaglini, F., Bartlett, P.N., Wang, J.H., (2000) Anal. Chem., 72, p. 502
  • David, S., (1997) The Chemical and Supramolecular Chemistry of Carbohydrates: A Chemical Introduction to the Glycosciences, , Oxford University Press, Oxford, ch. 15, 250-264
  • Becker, J.W., Reeke Jr., G.N., Cunningham, G.N., Edelman, G.M., (1976) Nature, 259, p. 406
  • Singh, R.S., Tiwary, A.K., Kennedy, J.F., (1999) Crit. Rev. Biotechnol., 19, p. 145
  • Lis, H., Sharon, N., (1998) Chem. Rev., 98, p. 637
  • Sharon, N., Lis, H., (2004) Glycobiology, 14, pp. 53R
  • Pallarola, D., Queralto, N., Knoll, W., Azzaroni, O., Battaglini, F., (2010) Chem.-Eur. J., 16, p. 13970
  • Lvov, Y., Ariga, K., Ichinose, I., Kunitake, T., (1995) J. Chem. Soc., Chem. Commun., p. 2313
  • Kobayashi, Y., Anzai, J.-I., (2001) J. Electroanal. Chem., 507, p. 250
  • Anzai, J.-I., Kobayashi, Y., (2000) Langmuir, 16, p. 2851
  • Yao, H., Hu, N., (2010) J. Phys. Chem. B, 114, p. 9926
  • Yao, H., Hu, N., (2009) J. Phys. Chem. B, 113, p. 16021
  • Yao, H., Hu, N., (2010) J. Phys. Chem. B, 114, p. 3380
  • Yao, H., Hu, N., (2011) J. Phys. Chem. B, 115, p. 6691
  • Pallarola, D., Queralto, N., Knoll, W., Ceolín, M., Azzaroni, O., Battaglini, F., (2010) Langmuir, 26, p. 13684
  • Knoll, W., (1998) Annu. Rev. Phys. Chem., 49, p. 569
  • Stenberg, E., Persson, B., Roos, H., Urbaniczky, C., (1991) J. Colloid Interface Sci., 143, pp. 513-526
  • Yu, F., PhD Thesis, , http://www.mpip-mainz.mpg.de/knoll/publications/thesis/yu_2004.pdf, Johannes Gutenberg-Universität Mainz, Germany
  • Willner, I., Rubin, S., Cohen, Y., (1993) J. Am. Chem. Soc., 115, p. 4937
  • Smith, E.A., Thomas, W.D., Kiessling, L.L., Corn, R.M., (2003) J. Am. Chem. Soc., 125, p. 6140
  • Azzaroni, O., Mir, M., Knoll, W., (2007) J. Phys. Chem. B, 111, p. 13499
  • Farooqi, M., Sosnitza, P., Saleemuddin, M., Ulber, R., Scheper, T., (1999) Appl. Microbiol. Biotechnol., 52, p. 373
  • Farooqi, M., Saleemuddin, M., Ulber, R., Sosnitza, P., Scheper, T., (1997) J. Biotechnol., 55, p. 171
  • Husain, S., Jafri, F., Saleemuddin, M., (1996) Biochem. Mol. Biol. Int., 40, p. 1
  • Höök, F., Rodahl, M., Brzezinski, P., Kasemo, B., (1998) J. Colloid Interface Sci., 208, p. 63
  • Larsson, C., Rodahl, M., Höök, F., (2003) Anal. Chem., 75, p. 5080
  • Baba, A., Taranekar, P., Ponnapati, R.R., Knoll, W., Advincula, R.C., (2010) ACS Appl. Mater. Interfaces, 2, p. 2347. , QCM-D response is extremely sensitive not only to the viscoelastic properties but also to the density and thickness of any mass coupled to the quartz crystal surface. In our case, the film is constituted of proteins conjugated to the carbohydrate ligand-exposing sensor surface in an aqueous solution. As a consequence, a fraction of solvent is trapped between the adsorbed protein layers. More importantly, this retained water is not strictly "fixed" to the film if we consider that it does not behave as the liquid layer above the film. The QCM detects the solvent that is hydrodynamically coupled to the assembled protein film. In contrast, the SPR response, that originated from refractive index changes as water is replaced by the respective proteins, is mostly proportional to the masses of the adsorbed biomolecules. Recommended reading on this topic
  • Azzaroni, O., Mir, M., Knoll, W., (2007) J. Phys. Chem. B, 111, pp. 13499-13503
  • Reimhult, E., Larsson, C., Kasemo, B., Höök, F., (2004) Anal. Chem., 76, pp. 7211-7220
  • Kulys, J.J., Pesliakiene, M.V., Samalius, A.S., (1981) Bioelectrochem. Bioenerg., 8, p. 81
  • Obara, T.J., Vreeke, M.S., Battaglini, V.F., Heller, A., (1993) Electroanalysis, 5, p. 825
  • Delvaux, M., Walcarius, A., Demoustier-Champagne, S., (2005) Biosens. Bioelectron., 20, p. 1587
  • Suarez, G., Jackson, R.J., Spoors, J.A., McNeil, C.J., (2007) Anal. Chem., 79, p. 1961
  • Dequaire, M., Heller, A., (2002) Anal. Chem., 74, pp. 4370-4377
  • Mao, F., Mano, N., Heller, A., (2003) J. Am. Chem. Soc., 125, pp. 4951-4957
  • Scodeller, P., Flexer, V., Szamocki, R., Calvo, E.J., Tognalli, N., Troiani, H., Fainstein, A., (2008) J. Am. Chem. Soc., 130, pp. 12690-12697
  • Coman, V., Gustavsson, T., Finkelsteinas, A., Von Wachenfeldt, C., Hägerhäll, C., Gorton, L., (2009) J. Am. Chem. Soc., 131, pp. 16171-16176
  • Onda, M., Lvov, Y., Ariga, K., Kunitake, T., (1996) Biotechnol. Bioeng., 51, p. 163
  • Onda, M., Lvov, Y., Ariga, K., Kunitake, T., (1996) J. Ferment. Bioeng., 82, p. 502
  • Caruso, F., Schuüler, C., (2000) Langmuir, 16, pp. 9595-9603
  • Pescador, P., Katakis, I., Toca-Herrera, J.L., Donath, E., (2008) Langmuir, 24, p. 14108
  • Disawal, S., Qiu, J., Elmore, B.B., Lvov, Y.M., (2003) Colloids Surf., B, 32, p. 145
  • Calvo, E.J., Battglini, F., Danilowicz, C., Wolosiuk, A., Otero, M., (2000) Faraday Discuss., 116, p. 47
  • Abad, J.M., Vélez, M., Santamaría, C., Guisán, J.M., Matheus, P.R., Vázquez, L., Gazaryan, I., Fernández, V.M., (2002) J. Am. Chem. Soc., 124, p. 12845
  • Sun, Y., Bai, Y., Yang, W., Sun, C., (2007) Electrochim. Acta, 52, p. 7352
  • Mayes, A.G., (2002) Biomolecular Sensors, , in, ed. E. Gizeli and C. R. Lowe, Taylor & Francis, London, ch. 4, p. 49
  • Prieto-Simón, B., Campás, M., Marty, J.-L., (2008) Protein Pept. Lett., 15, p. 757
  • Bright, H.J., Appleby, M., (1969) J. Biol. Chem., 244, p. 3625
  • Pallarola, D., Queralto, N., Battaglini, F., Azzaroni, O., (2010) Phys. Chem. Chem. Phys., 12, p. 8071. , The molecular dimensions of Con A are reported to be 4.0 × 7.8 × 8.0 nm 3
  • Becker, J.W., Reeke Jr., G.N., Cunningham, B.A., Edelman, G.M., (1976) Nature, 259, p. 406. , Based on these dimensions a closely packed monomolecular layer of protein corresponds to (3.8 ± 1.2) pmol cm -2 . Consequently, the surface coverage for the first and second layers of Con A obtained by SPR corresponds to 40-70% and 12-21% of a closely packed monolayer, respectively. Similar calculations for HRP and GOx correspond to 8-12% and 20-30% of a closely packed monolayer of the respective enzyme. The molecular dimensions of HRP and GOx are reported to be 4.0 × 5.5 × 5.5 nm 3
  • Henriksen, A., Smith, A.T., Gajhede, M., (1999) J. Biol. Chem., 274, p. 35005. , and 6.0 × 5.2 × 7.7 nm 3
  • Hecht, H.J., Kalisz, H.M., Hendle, J., Schmid, R.D., (1993) J. Mol. Biol., 229, p. 153. , respectively. However, all these results do not consider the amount of water within the film, which produces a profound departure from the idealized closely packed monolayer. Consequently, these values have to be taken as an underestimation of the actual situation
  • Rodahl, M., Dahlqvist, P., Höök, F., Kasemo, B., (2002) Biomolecular Sensors, , in, ed. E. Gizeli and C. R. Lowe, Taylor & Francis, London, ch. 12, 304-316
  • Larsson, C., Rodahl, M., Höök, F., (2003) Anal. Chem., 75, pp. 5080-5087
  • Corton, E., Battaglini, F., (2001) J. Electroanal. Chem., 511, p. 8
  • Maidan, R., Heller, A., (1992) Anal. Chem., 64, p. 2889
  • Ohara, T.J., Vreeke, M.S., Battaglini, F., Heller, A., (1993) Electroanalysis, 5, p. 825
  • Goldstein, I.J., Hollerman, C.E., Merrick, J.M., (1965) Biochim. Biophys. Acta, 97, p. 68
  • Ballerstadt, R., Schultz, J.S., (1998) Sens. Actuators, B, 46, p. 50
  • Yin, R., Han, J., Zhang, J., Nie, J., (2010) Colloids Surf., B, 76, p. 483
  • Zhang, R., Tang, M., Bowyer, A., Eisenthal, R., Hubble, J., (2006) React. Funct. Polym., 66, p. 757
  • Venturoli, D., Rippe, B., (2005) Am. J. Physiol., 288, p. 605

Citas:

---------- APA ----------
Pallarola, D., Bildering, C.V., Pietrasanta, L.I., Queralto, N., Knoll, W., Battaglini, F. & Azzaroni, O. (2012) . Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: A biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces. Physical Chemistry Chemical Physics, 14(31), 11027-11039.
http://dx.doi.org/10.1039/c2cp41225j
---------- CHICAGO ----------
Pallarola, D., Bildering, C.V., Pietrasanta, L.I., Queralto, N., Knoll, W., Battaglini, F., et al. "Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: A biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces" . Physical Chemistry Chemical Physics 14, no. 31 (2012) : 11027-11039.
http://dx.doi.org/10.1039/c2cp41225j
---------- MLA ----------
Pallarola, D., Bildering, C.V., Pietrasanta, L.I., Queralto, N., Knoll, W., Battaglini, F., et al. "Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: A biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces" . Physical Chemistry Chemical Physics, vol. 14, no. 31, 2012, pp. 11027-11039.
http://dx.doi.org/10.1039/c2cp41225j
---------- VANCOUVER ----------
Pallarola, D., Bildering, C.V., Pietrasanta, L.I., Queralto, N., Knoll, W., Battaglini, F., et al. Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: A biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces. Phys. Chem. Chem. Phys. 2012;14(31):11027-11039.
http://dx.doi.org/10.1039/c2cp41225j