Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The P2O5-water system has the widest range of continuously glass-forming compositions known for any glassformer + water binary system. Despite the great range of structures explored by the glasses and liquids in this system, the glass transition temperature (Tg) itself varies in a simple monotonic fashion. However the values of Tg reported in the literature show wide disagreement, linked to the different methods of measurement employed. In this work we use differential scanning calorimetry (DSC) to obtain both Tg itself and the jump in heat capacity that occurs as the metastable equilibrium of the supercooled liquid relieves the non-ergodic glassy state. Our study covers the molar ratio range of H2O/P2O5 from 1.5 to 14 (corresponding to the mass fraction of P2O5 between 0.36 and 0.84), which includes the compositions corresponding to pyrophosphoric acid (H 4P2O7) and orthophosphoric acid (H 3PO4). The theoretical model of Couchman and Karasz predicts very well the glass transition temperatures of the P2O 5-H2O system over the whole composition range if the relatively large heat capacity change associated with water in aqueous solutions at the glass transition temperature is adopted, instead of the vanishingly small value observed for vapor deposited or hyperquenched pure water. Therefore, solvent water in this ambient pressure P2O5-H 2O system behaves like a different liquid, more closely resembling a high-density liquid (HDL) polyamorph, as suggested by Mishima for electrolytes at high pressures. © the Owner Societies 2011.

Registro:

Documento: Artículo
Título:Heat capacity and glass transition in P2O5-H 2O solutions: Support for Mishima's conjecture on solvent water at low temperature
Autor:Corti, H.R.; Nores-Pondal, F.J.; Angell, C.A.
Filiación:Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, San Martín (1650), Buenos Aires, Argentina
Instituto de Química Física de Los Materiales, Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (1428), Argentina
Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, United States
Laboratory of Components for Fuel Cells, and Electrolysers, and of Modeling (LCPEM), Commission for Atomic and Alternative Energies of France, 38054 Grenoble Cedex 9, France
Año:2011
Volumen:13
Número:44
Página de inicio:19741
Página de fin:19748
DOI: http://dx.doi.org/10.1039/c1cp22185j
Título revista:Physical Chemistry Chemical Physics
Título revista abreviado:Phys. Chem. Chem. Phys.
ISSN:14639076
CODEN:PPCPF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14639076_v13_n44_p19741_Corti

Referencias:

  • Mishima, O., (2004) J. Chem. Phys., 121, p. 3161
  • Mishima, O., (2005) J. Chem. Phys., 123, p. 154506
  • Mishima, O., (2007) J. Chem. Phys., 126, p. 244507
  • Angell, C.A., Sare, E.J., (1970) J. Chem. Phys., 52, p. 1058
  • Couchman, P.R., Karasz, F.E., (1978) Macromolecules, 11, p. 117
  • Adam, G., Gibbs, J.H., (1965) J. Chem. Phys., 43, p. 139
  • Shelby, J.E., (2002) Introduction to Glass Science and Technology, , Royal Society of Chemistry, 2nd edn
  • Croswell, R.T., Reisman, A., Simpson, D.L., Temple, D., Williams, C.K., (1999) J. Electrochem. Soc., 146, p. 4569
  • Sharaf El-Deen, L.M., Al Salhi, M.S., Elkholy, M.M., (2008) J. Non-Cryst. Solids, 354, p. 3762
  • Zwanziger, J.W., Shaw, J.L., Werner-Zwanziger, U., Aitken, B.G., (2006) J. Phys. Chem. B, 110, p. 20123
  • Martin, S.W., Angell, C.A., (1986) J. Non-Cryst. Solids, 83, p. 185
  • Parsons, A.J., Rudd, C.D., (2008) J. Non-Cryst. Solids, 354, p. 4661
  • Diaz, L.A., Abuin, G.C., Corti, H.R., (2009) J. Power Sources, 188, p. 45
  • Hill, W.L., Faust, G.T., Hendricks, S.B., (1943) J. Am. Chem. Soc., 65, p. 794
  • Corbridge, D.E.C., (1974) The Structural Chemistry of Phosphorus, , Elsevier Scientific Publishing Company, Amsterdam
  • Sakka, S., McKenzie, J.D., (1971) J. Non-Cryst. Solids, 6, p. 145
  • Cormia, R.L., MacKenzie, J.D., Turnbull, D.J., (1963) J. Appl. Phys., 34, p. 2245
  • Martin, S.W., Angell, C.A., (1986) J. Phys. Chem., 90, p. 6736
  • Hudgens, J.J., Martin, S.W., (1993) J. Am. Ceram. Soc., 76, p. 1691
  • Sidebottom, D.L., Changstrom, J.R., (2008) Phys. Rev. B: Condens. Matter Mater. Phys., 77, pp. 020201R
  • Böhmer, R., Ngai, K.L., Angell, C.A., Plazek, D.J., (1993) J. Chem. Phys., 99, p. 4201
  • Kobeko, P.P., Kuvshinskii, E.V., Shishkin, N.J., (1937) J. Phys. Chem. Mosc., 9, p. 387
  • Ellis, B., (1976) Nature, 263, p. 674
  • Eisenberg, A., Farb, H., Cool, L.G., (1966) J. Polym. Sci., Part A-2, 4, p. 855
  • Toy, A.D.F., (1975) The Chemistry of Phosphorus, p. 482. , Pergamon, Oxford
  • Aihara, Y., Sonai, A., Hattori, M., Hayamizu, K., (2006) J. Phys. Chem. B, 110, p. 24999
  • (1982) Kirk-Othmer Encyclopedia of Chemical Technology, 17, p. 433. , John Wiley & Sons, 3rd edn
  • Oguni, M., Angell, C.A., (1980) J. Chem. Phys., 73, p. 1948
  • Kohl, I., Bachmann, L., Mayer, E., Hallbrucker, A., Loerting, T., (2005) Nature, 435, p. 1
  • Cohen, M.H., Turnbull, D., (1959) J. Chem. Phys., 31, p. 1164
  • Gordon J, M., Taylor, J.S., (1952) J. Appl. Chem., 2, p. 493
  • Goldstein, M., (1985) Macromolecules, 18, p. 277
  • Couchman, P.R., (1987) Macromolecules, 20, p. 1712
  • Pinal, R., (2008) Entropy, 10, p. 207
  • Corti, H.R., Angell, C.A., Auffret, T., Levine, H., Buera, M.P., Reid, D.S., Roos, Y., Slade, L., (2010) Pure Appl. Chem., 82, p. 1065
  • Ten Brinkle, G., Karasz, F.E., Ellis, T.S., (1983) Macromolecules, 16, p. 244
  • Sugisaki, M., Suga, H., Seki, S., (1968) Bull. Chem. Soc. Jpn., 41, p. 2591
  • Hallbrucker, A., Mayer, E., Johari, G.P., (1989) J. Phys. Chem., 93, p. 4986
  • Johari, G.P., Hallbrucker, A., Mayer, E., (1996) Science, 273, p. 90
  • Johari, G.P., Hallbrucker, A., Mayer, E., (1987) Nature, 330, p. 552
  • Hallbrucker, A., Mayer, E., Johari, G.P., (1989) Philos. Mag. B, 60, p. 170
  • Johari, G.P., Astl, G., Mayer, E., (1990) J. Chem. Phys., 92, p. 809
  • Johari, G.P., Hallbrucker, A., Mayer, E., (1990) J. Chem. Phys., 92, p. 6742
  • Kohl, I., Hallbrucker, A., Mayer, E., (2000) Phys. Chem. Chem. Phys., 2, p. 1579
  • MacFarlane, D.R., Angell, C.A., (1984) J. Phys. Chem., 88, p. 759
  • Angell, C.A., Tucker, J.C., (1980) J. Phys. Chem., 84, p. 268
  • Ito, K., Moynihan, C.T., Angell, C.A., (1999) Nature, 398, p. 492
  • Angell, C.A., (2008) Science, 319, p. 582
  • Yue, Y., Angell, C.A., (2004) Nature, 427, p. 717
  • Mishima, O., (1996) Nature, 384, p. 546
  • Nelmes, R.J., Loveday, J.S., Straessle, T., Bull, C.L., Guthrie, M., Hamel, G., Klotz, S., (2006) Nat. Phys., 2, p. 414
  • Loerting, T., Winkel, K., Seidl, M., Bauer, M., Mitterdorfer, C., Handle, P.H., Salzmann, C.G., Bowron, D.T., (2011) Phys. Chem. Chem. Phys., 13, p. 8783
  • Elsaesser, M.S., Winkel, K., Mayer, E., Loerting, T., (2010) Phys. Chem. Chem. Phys., 12, p. 708
  • Chatterjee, S., Debenedetti, P.G., (2006) J. Chem. Phys., 124, p. 154503
  • Corradini, D., Rovere, M., Gallo, P., (2011) J. Phys. Chem. B, 115, p. 1461
  • Longinotti, M.P., Carignano, M.A., Szleifer, I., Corti, H.R., (2011) J. Chem. Phys., 134, p. 244510
  • Moore, E.B., Molinero, V., (2010) J. Chem. Phys., 132, p. 244504
  • Molinero, V., Moore, E.B., (2009) J. Phys. Chem. B, 113, p. 4008
  • Angell, C.A., Poole, H., Hemmati, M., (1998) Proc. 12th East European Glass Conf., pp. 100-109. , ed. B. Samunova and Y. Demetriew, Varna, Bulgaria
  • Haller, W., MacEdo, P.B., (1968) Phys. Chem. Glasses, 9, p. 153

Citas:

---------- APA ----------
Corti, H.R., Nores-Pondal, F.J. & Angell, C.A. (2011) . Heat capacity and glass transition in P2O5-H 2O solutions: Support for Mishima's conjecture on solvent water at low temperature. Physical Chemistry Chemical Physics, 13(44), 19741-19748.
http://dx.doi.org/10.1039/c1cp22185j
---------- CHICAGO ----------
Corti, H.R., Nores-Pondal, F.J., Angell, C.A. "Heat capacity and glass transition in P2O5-H 2O solutions: Support for Mishima's conjecture on solvent water at low temperature" . Physical Chemistry Chemical Physics 13, no. 44 (2011) : 19741-19748.
http://dx.doi.org/10.1039/c1cp22185j
---------- MLA ----------
Corti, H.R., Nores-Pondal, F.J., Angell, C.A. "Heat capacity and glass transition in P2O5-H 2O solutions: Support for Mishima's conjecture on solvent water at low temperature" . Physical Chemistry Chemical Physics, vol. 13, no. 44, 2011, pp. 19741-19748.
http://dx.doi.org/10.1039/c1cp22185j
---------- VANCOUVER ----------
Corti, H.R., Nores-Pondal, F.J., Angell, C.A. Heat capacity and glass transition in P2O5-H 2O solutions: Support for Mishima's conjecture on solvent water at low temperature. Phys. Chem. Chem. Phys. 2011;13(44):19741-19748.
http://dx.doi.org/10.1039/c1cp22185j