Artículo

Moore, E.B.; De La Llave, E.; Welke, K.; Scherlis, D.A.; Molinero, V. "Freezing, melting and structure of ice in a hydrophilic nanopore" (2010) Physical Chemistry Chemical Physics. 12(16):4124-4134
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The nucleation, growth, structure and melting of ice in 3 nm diameter hydrophilic nanopores are studied through molecular dynamics simulations with the mW water model. The melting temperature of water in the pore was Tporem = 223 K, 51 K lower than the melting point of bulk water in the model and in excellent agreement with experimental determinations for 3 nm silica pores. Liquid and ice coexist in equilibrium at the melting point and down to temperatures as low as 180 K. Liquid water is located at the interface of the pore wall, increasing from one monolayer at the freezing temperature, Tporef = 195 K, to two monolayers a few degrees below Tporem. Crystallization of ice in the pore occurs through homogeneous nucleation. At the freezing temperature, the critical nucleus contains ∼75 to 100 molecules, with a radius of gyration similar to the radius of the pore. The critical nuclei contain features of both cubic and hexagonal ice, although stacking of hexagonal and cubic layers is not defined until the nuclei reach ∼150 molecules. The structure of the confined ice is rich in stacking faults, in agreement with the interpretation of X-ray and neutron diffraction experiments. Though the presence of cubic layers is twice as prevalent as hexagonal ones, the crystals should not be considered defective Ic as sequences with more than three adjacent cubic (or hexagonal) layers are extremely rare in the confined ice. © 2010 the Owner Societies.

Registro:

Documento: Artículo
Título:Freezing, melting and structure of ice in a hydrophilic nanopore
Autor:Moore, E.B.; De La Llave, E.; Welke, K.; Scherlis, D.A.; Molinero, V.
Filiación:Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, United States
Departamento de Química Inorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab II C1428 EHA, Argentina
Año:2010
Volumen:12
Número:16
Página de inicio:4124
Página de fin:4134
DOI: http://dx.doi.org/10.1039/b919724a
Título revista:Physical Chemistry Chemical Physics
Título revista abreviado:Phys. Chem. Chem. Phys.
ISSN:14639076
CODEN:PPCPF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14639076_v12_n16_p4124_Moore

Referencias:

  • Alba-Simionesco, C., Coasne, B., Dosseh, G., Dudziak, G., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M., (2006) J. Phys.: Condens. Matter, 18, p. 15
  • Brovchenko, I., Oleinikova, A., (2008) Interfacial and Confined Water, , Elsevier, Amsterdam
  • Shenderovich, I., Buntkowsky, G., Schreiber, A., Gedat, E., Sharif, S., Albrecht, J., Golubev, N., Limbach, H., (2003) J. Phys. Chem. B, 107, p. 11924
  • Shenderovich, I.G., Mauder, D., Akcakayiran, D., Buntkowsky, G., Limbach, H.-H., Findenegg, G.H., (2007) J. Phys. Chem. B, 111, p. 12088
  • Schmidt, R., Hansen, E., Stöcker, M., Akporiaye, D., Ellestad, O., (1995) J. Am. Chem. Soc., 117, p. 4049
  • Jahnert, S., Chavez, F.V., Schaumann, G.E., Schreiber, A., Schonhoff, M., Findenegg, G.H., (2008) Phys. Chem. Chem. Phys., 10, p. 6039
  • Schreiber, A., Ketelsen, I., Findenegg, G.H., (2001) Phys. Chem. Chem. Phys., 3, p. 1185
  • Kittaka, S., Ishimaru, S., Kuranishi, M., Matsuda, T., Yamaguchi, T., (2006) Phys. Chem. Chem. Phys., 8, p. 3223
  • Morishige, K., Kawano, K., (1999) J. Chem. Phys., 110, p. 4867
  • Morishige, K., Uematsu, H., Tateishi, N., (2004) J. Phys. Chem. B, 108, p. 7241
  • Findenegg, G.H., Jaehnert, S., Akcakayiran, D., Schreiber, A., (2008) ChemPhysChem, 9, p. 2651
  • Webber, J.B.W., Dore, J.C., Strange, J.H., Anderson, R., Tohidi, B., (2007) J. Phys.: Condens. Matter, 19, p. 415117
  • Liu, E., Dore, J.C., Webber, J.B.W., Khushalani, D., Jähnert, S., Findenegg, G.H., Hansen, T., (2006) J. Phys.: Condens. Matter, 18, p. 10009
  • Seyed-Yazdi, J., Farman, H., Dore, J.C., Webber, J.B.W., Findenegg, G.H., (2008) J. Phys.: Condens. Matter, 20, p. 205108
  • Seyed-Yazdi, J., Farman, H., Dore, J.C., Webber, J.B.W., Findenegg, G.H., Hansen, T., (2008) J. Phys.: Condens. Matter, 20, p. 205107
  • Kuhs, W.F., Bliss, D.V., Finney, J.L., (1987) J. Phys. Colloques, 48, p. 631
  • Hansen, T.C., Koza, M.M., Kuhs, W.F., (2008) J. Phys.: Condens. Matter, 20, p. 285104
  • Hansen, T.C., Falenty, A., Kuhs, W.F., Modelling ice Ic of different origin and stacking faulted hexagonal ice using neutron powder diffraction data (2006) Physics and Chemistry of Ice, , W. F. Kuhs, RSC Publishing, Royal Society of Chemistry, Cambridge, 201
  • Hansen, T.C., Koza, M.M., Lindner, P., Kuhs, W.F., (2008) J. Phys.: Condens. Matter, 20, p. 285105
  • Morishige, K., Uematsu, H., (2005) J. Chem. Phys., 122, p. 044711
  • Matsumoto, M., Saito, S., Ohmine, I., (2002) Nature, 416, p. 409
  • Vrbka, L., Jungwirth, P., (2006) J. Phys. Chem. B, 110, p. 18126
  • Koga, K., Tanaka, H., (2005) J. Chem. Phys., 122, p. 104711
  • Koga, K., Tanaka, H., Zeng, X.C., (2000) Nature, 408, p. 564
  • Koga, K., Zeng, X.C., Tanaka, H., (1997) Phys. Rev. Lett., 79, p. 5262
  • Kumar, P., Starr, F.W., Buldyrev, S.V., Stanley, H.E., (2007) Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 75, p. 011202
  • Giovambattista, N., Rossky, P.J., Debenedetti, P.G., (2009) Phys. Rev. Lett., 102, p. 050603
  • Giovambattista, N., Rossky, P.J., Debenedetti, P.G., (2006) Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 73, p. 041604
  • Zangi, R., Mark, A.E., (2003) J. Chem. Phys., 119, p. 1694
  • Zangi, R., (2004) J. Phys.: Condens. Matter, 16, p. 5371
  • Koga, K., Gao, G.T., Tanaka, H., Zeng, X.C., (2001) Nature, 412, p. 802
  • Radhakrishnan, R., Trout, B.L., (2003) J. Am. Chem. Soc., 125, p. 7743
  • Brukhno, A.V., Anwar, J., Davidchack, R., Handel, R., (2008) J. Phys.: Condens. Matter, 20, p. 494243
  • Quigley, D., Rodger, P.M., (2008) J. Chem. Phys., 128, p. 154518
  • Tanaka, H., Okabe, I., (1996) Chem. Phys. Lett., 259, p. 593
  • Fernandez, R.G., Abascal, J.L.F., Vega, C., (2006) J. Chem. Phys., 124, p. 144506
  • Vega, C., Sanz, E., Abascal, J.L.F., (2005) J. Chem. Phys., 122, p. 114507
  • Vega, C., Abascal, J.L.F., Sanz, E., MacDowell, L.G., McBride, C., (2005) J. Phys.: Condens. Matter, 17, p. 3283
  • Abascal, J.L.F., Sanz, E., Fernandez, R.G., Vega, C., (2005) J. Chem. Phys., 122, p. 234511
  • Molinero, V., Moore, E.B., (2009) J. Phys. Chem. B, 113, p. 4008
  • Moore, E.B., Molinero, V., (2009) J. Chem. Phys., 130, p. 244505
  • Jacobson, L.C., Hujo, W., Molinero, V., (2009) J. Phys. Chem. B, 113, p. 10298
  • Zhang, W., He, C., Lian, J., Jiang, Q., (2006) Chem. Phys. Lett., 421, p. 251
  • Steinhardt, P.J., Nelson, D.R., Ronchetti, M., (1981) Phys. Rev. Lett., 47, p. 1297
  • Ten Wolde, P.R., Ruiz-Montero, M.J., Frenkel, D., (1996) J. Chem. Phys., 104, pp. 9933-9947
  • Plimpton, S.J., (1995) J. Comput. Phys., 117, p. 1
  • Errington, J.R., Debenedetti, P.G., (2001) Nature, 409, p. 318
  • Ramsdell, L.S., (1947) Am. Mineral., 32, p. 64
  • Angell, C.A., (2004) Annu. Rev. Phys. Chem., 55, p. 559
  • Debenedetti, P.G., (2003) J. Phys.: Condens. Matter, 15, p. 1669
  • Moore, E.B., Molinero, V., Liquid-liquid Transformation in Water Controls the Temperature of Homogeneous Nucleation of Ice, Manuscript in Preparation
  • Yamamuro, O., Oguni, M., Matsuo, T., Suga, H., (1987) J. Phys. Chem. Solids, 48, pp. 935-942
  • Wallacher, D., Knorr, K., (2001) Phys. Rev. B: Condens. Matter Mater. Phys., 63, p. 104202
  • Mamontov, E., Wesolowski, D.J., Vlcek, L., Cummings, P.T., Rosenqvist, J., Wang, W., Cole, D.R., (2008) J. Phys. Chem. C, 112, p. 12334

Citas:

---------- APA ----------
Moore, E.B., De La Llave, E., Welke, K., Scherlis, D.A. & Molinero, V. (2010) . Freezing, melting and structure of ice in a hydrophilic nanopore. Physical Chemistry Chemical Physics, 12(16), 4124-4134.
http://dx.doi.org/10.1039/b919724a
---------- CHICAGO ----------
Moore, E.B., De La Llave, E., Welke, K., Scherlis, D.A., Molinero, V. "Freezing, melting and structure of ice in a hydrophilic nanopore" . Physical Chemistry Chemical Physics 12, no. 16 (2010) : 4124-4134.
http://dx.doi.org/10.1039/b919724a
---------- MLA ----------
Moore, E.B., De La Llave, E., Welke, K., Scherlis, D.A., Molinero, V. "Freezing, melting and structure of ice in a hydrophilic nanopore" . Physical Chemistry Chemical Physics, vol. 12, no. 16, 2010, pp. 4124-4134.
http://dx.doi.org/10.1039/b919724a
---------- VANCOUVER ----------
Moore, E.B., De La Llave, E., Welke, K., Scherlis, D.A., Molinero, V. Freezing, melting and structure of ice in a hydrophilic nanopore. Phys. Chem. Chem. Phys. 2010;12(16):4124-4134.
http://dx.doi.org/10.1039/b919724a