Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Environmental context The toxicity of metals in the environment is greatly influenced by natural organic matter owing to its ability to bind metals to form complexes that can be immobile and non-bioavailable. Sound mathematical models are important to reliably predict the behaviour of such contaminants, and how they are affected by organic matter and other environmental colloids. Here a new model is discussed and compared with precedent ones. Abstract The mathematical modelling of metal cation-natural organic matter interactions is a fundamental tool in predicting the state and fate of pollutants in the environment. In this work, the binding of protons and metal cations to humic substances is modelled applying the Elastic Polyelectrolyte Network (EPN) electrostatic model with the Non-Ideal Competitive Adsorption (NICA) isotherm as the intrinsic part (NICA-EPN model). Literature data of proton and metal binding to humic substances at different pH and ionic strength values are analysed, discussing in depth the model predictions. The NICA-EPN model is found to describe well these phenomena. The electrostatic contribution to the Gibbs free energy of adsorbate-humic interaction in the EPN model is lower than that predicted by the Donnan phase model; the intrinsic mean binding constants for protons and metal cations are generally higher, closer to independent estimations and to the range of acid-base and complexation equilibrium values for common carboxylic acids. The results for metal cations are consistent with recent literature findings. The model predicts shrinking of the humic particles with increased metal binding, as a consequence of net charge decrease. © CSIRO 2014.

Registro:

Documento: Artículo
Título:Modelling proton and metal binding to humic substances with the NICA-EPN model
Autor:Montenegro, A.C.; Orsetti, S.; Molina, F.V.
Filiación:Instituto de Química Física de Materiales,Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica,Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
Institut für Geowissenschaften, Zentrum für Angewandte Geowissenschaften, Eberhard-Karls Universität Tübingen, D-72074 Tübingen, Germany
Palabras clave:adsorption; carboxylic acid; cation; chemical binding; complexation; environmental fate; Gibbs free energy; humic substance; isotherm; metal; numerical model; pollutant transport; polymer
Año:2014
Volumen:11
Número:3
Página de inicio:318
Página de fin:332
DOI: http://dx.doi.org/10.1071/EN13214
Título revista:Environmental Chemistry
Título revista abreviado:Environ. Chem.
ISSN:14482517
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14482517_v11_n3_p318_Montenegro

Referencias:

  • Ephraim, J., Alegret, S., Mathuthu, A., Bicking, M., Malcolm, R.L., Marinsky, J.A., A unified physicochemical description of the protonation and metal ion complexation equilibria of natural organic acids (humic and fulvic acids) 2 influence of polyelectrolyte properties and functional group heterogeneity on the protonation equilibria of fulvic acid (1986) Environ. Sci. Technol, 20, p. 354. , 10.1021/ES00146A007
  • Senesi, N., Loffredo, E., (2005) Metal Ion Complexation by Humic Substances, in Chemical Processes in Soils, pp. 563-617. , Eds M. A. Tabatabai, D. L. Sparks) Soil Science Society of America: Madison, WI
  • Sen Gupta, S., Bhattacharyya, K.G., Kinetics of adsorption of metal ions on inorganic materials: A review (2011) Adv. Colloid Interface Sci, 162, p. 39. , 10.1016/J.CIS.2010.12.004
  • Clapp, C.E., Hayes, M.H.B., Simpson, A.J., Kingery, W.L., Chemistry of soil organic matter (2005) Chemical Processes in Soils, pp. 1-150. , Eds M A. Tabatabai, D. L. Sparks Soil Science Society of America: Madison, WI
  • Baldock, J.A., Nelson, P.N., (1999) Soil Organic Matter, in Handbook of Soil Science, pp. B75-B84. , Ed. M. L. Sumner CRC: Boca Raton, Fl
  • Zsolnay, A., Dissolved organic matter: Artefacts, definitions, and functions (2003) Geoderma, 113, p. 187. , 10.1016/S0016-7061(02) 00361-0
  • Orsetti, S., Andrade, E.M., Molina, F.V., Application of a constrained regularization method to extraction of affinity distributions: Proton and metal binding to humic substances (2009) J. Colloid Interface Sci, 336 (377). , 10.1016/J.JCIS.2009.04.049
  • Simpson, A.J., Kingery, W.L., Hayes, M.H., Spraul, M., Humpfer, E., Dvortsak, P., Kerssebaum, R., Hofmann, M., Molecular structures and associations of humic substances in the terrestrial environment (2002) Naturwissenschaften, 89, p. 84. , 10.1007/ S00114-001-0293-0298
  • Hosse, M., Wilkinson, K.J., Determination of electrophoretic mobilities and hydrodynamic radii of three humic substances as a function of pH and ionic strength (2001) Environmental Science and Technology, 35 (21), pp. 4301-4308. , DOI 10.1021/es010038r
  • Duval, J.F.L., Wilkinson, K.J., Van Leeuwen, H.P., Buffle, J., Humic substances are soft and permeable: Evidence from their electrophoretic mobilities (2005) Environ. Sci. Technol, 39, p. 6435. , 10.1021/ ES050082X
  • Buffle, J., Altmann, R.S., Filella, M., Tessier, A., Complexation by natural heterogeneous compounds: Site occupation distribution functions, a normalized description of metal complexation (1990) Geochim. Cosmochim. Acta, 54, p. 1535. , 10.1016/0016-7037(90)90389-3
  • Tipping, E., Humic ion-binding model VI: An improved description of the interactions of protons and metal ions with humic substances (1998) Aquatic Geochemistry, 4 (1), pp. 3-48. , DOI 10.1023/A:1009627214459
  • Gustafsson, J.P., Pechova, P., Berggren, D., Modeling metal binding to soils: The role of natural organic matter (2003) Environmental Science and Technology, 37 (12), pp. 2767-2774. , DOI 10.1021/es026249t
  • Goldberg, S., (2005) Equations and Models Describing Adsorption Processes in Soils, in Chemical Processes in Soils, pp. 489-518. , Eds M. A. Tabatabai, D. L. Sparks) Soil Science Society of America: Madison, WI
  • Molina, F.V., (2013) Soil Colloids: Properties and Ion Binding, , CRC Press: Boca Raton FL
  • Tipping, E., Lofts, S., Sonke, J.E., Humic Ion-Binding Model, V., II: A revised parameterisation of cation-binding by humic substances (2011) Environ. Chem, 8, p. 225. , 10.1071/EN11016
  • Kinniburgh, D.G., Milne, C.J., Benedetti, M.F., Pinheiro, J.P., Filius, J., Koopal, L.K., Van Riemsdijk, W.H., Metal ion binding by humic acid: Application of the NICA-Donnan model (1996) Environmental Science and Technology, 30 (5), pp. 1687-1698. , DOI 10.1021/es950695h
  • Benedetti, M.F., Van Riemsdijk, W.H., Koopal, L.K., Humic substances considered as a heterogeneous Donnan gel phase (1996) Environmental Science and Technology, 30 (6), pp. 1805-1813. , DOI 10.1021/es950012y
  • Milne, C.J., Kinniburgh, D.G., Van Riemsdijk, W.H., Tipping, E., Generic NICA-Donnan model parameters for metal-ion binding by humic substances (2003) Environ. Sci. Technol, 37, p. 958. , 10.1021/ ES0258879
  • Christensen, J.B., Tipping, E., Kinniburgh, D.G., Gron, C., Christensen, T.H., Proton binding by groundwater fulvic acids of different age, origins, and structure modeled with the model v and NICA-Donnan model (1998) Environmental Science and Technology, 32 (21), pp. 3346-3355. , DOI 10.1021/es971134o
  • Avena, M.J., Vermeer, A.W.P., Koopal, L.K., Volume and structure of humic acids studied by viscometrypH and electrolyte concentration effects (1999) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 151 (1-2), pp. 213-224. , DOI 10.1016/S0927-7757(98)00504-4, PII S0927775798005044
  • Chilom, G., Rice, J.A., Structural organization of humic acid in the solid state (2009) Langmuir, 25, p. 9012. , 10.1021/LA900750Z
  • Orsetti, S., Andrade, E.M., Molina, F.V., Modeling ion binding to humic substances: Elastic Polyelectrolyte Network model (2010) Langmuir, 26, p. 3134. , 10.1021/LA903086S
  • Orsetti, S., Marco-Brown, J.L., Andrade, E.M., Molina, F.V., PbII binding to humic substances: An equilibrium and spectroscopic study (2013) Environ. Sci. Technol, 47, p. 8325
  • Hill, T.L., Some statistical mechanical models of elastic polyelectrolytes and proteins (1952) J. Chem. Phys, 20, p. 1259. , 10.1063/1. 1700720
  • Dinar, E., Mentel, T.F., Rudich, Y., The density of humic acids and humic like substances (HULIS) from fresh and aged wood burning and pollution aerosol particles (2006) Atmos. Chem. Phys, 6, p. 5213. , 10.5194/ACP-6-5213-2006
  • Milne, C.J., Kinniburgh, D.G., Tipping, E., Generic NICA-Donnan model parameters for proton binding by humic substances (2001) Environmental Science and Technology, 35 (10), pp. 2049-2059. , DOI 10.1021/es000123j
  • Matynia, A., Lenoir, T., Causse, B., Spadini, L., Jacquet, T., Manceau, A., Semi-empirical proton binding constants for natural organic matter (2010) Geochim. Cosmochim. Acta, 74, p. 1836. , 10.1016/J.GCA. 2009.12.022
  • Flory, P.J., Themodynamics of high polymer solutions (1942) J. Chem. Phys, 10, p. 51. , 10.1063/1.1723621
  • Flory, P.J., Statistical mechanics of swelling of network structures (1950) J. Chem. Phys, 18, p. 108. , 10.1063/1.1747424
  • Kinniburgh, D.G., Van Riemsdijk, W.H., Koopal, L.K., Borkovec, M., Benedetti, M.F., Avena, M.J., Ion binding to natural organic matter: Competition, heterogeneity, stoichiometry and thermodynamic consistency (1999) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 151 (1-2), pp. 147-166. , DOI 10.1016/S0927-7757(98)00637-2, PII S0927775798006372
  • Pernet-Coudrier, B., Companys, E., Galceran, J., Morey, M., Mouchel, J.-M., Puy, J., Ruiz, N., Varrault, G., Pb-binding to various dissolved organic matter in urban aquatic systems: Key role of the most hydrophilic fraction (2011) Geochim. Cosmochim. Acta, 75, p. 4005. , 10.1016/J.GCA.2011.04.030
  • Companys, E., Puy, J., Galceran, J., Humic acid complexation to zn and cd determined with the new electroanalytical technique agnes (2007) Environ. Chem, 4, p. 347
  • Christl, I., Ionic strength- and pH-dependence of calcium binding by terrestrial humic acids (2012) Environ. Chem, 9, p. 89. , 10.1071/ EN11112
  • Davies, C.W., (1962) Ion Association, , Butterworths: London
  • Lourakis, M.I.A., (2004) Levmar: Levenberg-Marquardt Nonlinear Least Squares Algorithms in CC11, , Institute of Computer Science, FORTH: Heraklion, Crete, Greece
  • Gustafsson, J.P., (2011) Visual Minteq KTH, , Department of Land and Water Resources Engineering.: Stockholm, Sweden
  • Athavale, V.T., Prabhu, L.H., Vartak, D.G., Solution stability constants of some metal complexes of derivatives of catechol (1966) J. Inorg. Nucl. Chem, 28, p. 1237. , 10.1016/0022-1902(66) 80450-5
  • Furia, E., Porto, R., The hydrogen salicylate ion as ligand. Complex formation equilibria with dioxouranium(VI), neodymium(III) and lead(II) (2004) Annali di Chimica, 94 (11), pp. 795-804. , DOI 10.1002/adic.200490100
  • Gustafsson, J.P., Modeling the acid-base properties and metal complexation of humic substances with the Stockholm Humic Model (2001) Journal of Colloid and Interface Science, 244 (1), pp. 102-112. , DOI 10.1006/jcis.2001.7871
  • Lenoir, T., Matynia, A., Manceau, A., Convergence-optimized procedure for applying the NICA-Donnan model to potentiometric titrations of humic substances (2010) Environ. Sci. Technol, 44, p. 6221. , 10.1021/ES1015313
  • Avena, M.J., Koopal, L.K., Van Riemsdijk, W.H., Proton binding to humic acids: Electrostatic and intrinsic interactions (1999) Journal of Colloid and Interface Science, 217 (1), pp. 37-48. , DOI 10.1006/jcis.1999.6317
  • Hay, M.B., Myneni, S.C.B., Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy (2007) Geochimica et Cosmochimica Acta, 71 (14), pp. 3518-3532. , DOI 10.1016/j.gca.2007.03.038, PII S0016703707002293
  • Atalay, Y.B., Carbonaro, R.F., Di Toro, D.M., Distribution of proton dissociation constants for model humic and fulvic acid molecules (2009) Environ. Sci. Technol, 43, p. 3626. , 10.1021/ES803057R
  • Deshmukh, A.P., Pacheco, C., Hay, M.B., Myneni, S.C.B., Structural environments of carboxyl groups in natural organic molecules from terrestrial systems part 2: 2d nmr spectroscopy (2007) Geochimica et Cosmochimica Acta, 71 (14), pp. 3533-3544. , DOI 10.1016/j.gca.2007.03.039, PII S001670370700230X
  • Kirishima, A., Ohnishi, T., Sato, N., Tochiyama, O., Determination of the phenolic-group capacities of humic substances by non-aqueous titration technique (2009) Talanta, 79, p. 446. , 10.1016/J.TALANTA. 2009.04.008
  • Senesi, N., Loffredo, E., The chemistry of soil organic matter (1998) Soil Physical Chemistry, pp. 239-370. , Ed. D. L. Sparks CRC Press: Boca Raton, Fl
  • Pinheiro, J.P., Mota, A.M., Benedetti, M.F., Effect of aluminum competition on lead and cadmium binding to humic acids at variable ionic strength (2000) Environ. Sci. Technol, 34, p. 5137. , 10.1021/ ES0000899
  • Otto, W.H., Burton, S.D., Robert Carper, W., Larive, C.K., Examination of cadmium(II) complexation by the Suwannee River fulvic acid using 113Cd NMR relaxation measurements (2001) Environmental Science and Technology, 35 (24), pp. 4900-4904. , DOI 10.1021/es0108032
  • Xia, K., Bleam, W., Helmke, P.A., Studies of the nature of Cu2 and Pb2 binding sites in soil humic substances using X-ray absorption spectroscopy (1997) Geochim. Cosmochim. Acta, 61, p. 2211. , 10.1016/S0016-7037(97)00079-3
  • Terbouche, A., Ramdane-Terbouche, C.A., Hauchard, D., Djebbar, S., Evaluation of adsorption capacities of humic acids extracted from Algerian soil on polyaniline for application to remove pollutants such as CdII ZnII and NiII and characterization with cavity microelectrode (2011) J. Environ. Sci. (China), 23, p. 1095. , 10.1016/S1001-0742(10) 60521-9
  • Karlsson, T., Persson, P., Skyllberg, U., Complexation of copper(ii) in organic soils and in dissolved organic matter - Exafs evidence for chelate ring structures (2006) Environ. Sci. Technol, 40, p. 2623. , 10.1021/ES052211F
  • Xiong, J., Koopal, L.K., Tan, W., Fang, L., Wang, M., Zhao, W., Liu, F., Weng, L.P., Lead binding to soil fulvic and humic acids: NICA-Donnan modeling and XAFS spectroscopy (2013) Environ. Sci. Technol, 47, p. 11634. , 10.1021/ES402123V
  • Puy, J., Galceran, J., Huidobro, C., Companys, E., Samper, N., Garcés, J.L., Mas, F., Conditional affinity spectra of pb2 humic acid complexation from data obtained with agnes (2008) Environ. Sci. Technol, 42, p. 9289. , 10.1021/ES8021123
  • Manceau, A., Boisset, M.-C., Sarret, G., Hazemann, J.-L., Mench, M., Cambier, P., Prost, R., Direct determination of lead speciation in contaminated soils by EXAFS spectroscopy (1996) Environmental Science and Technology, 30 (5), pp. 1540-1552. , DOI 10.1021/es9505154
  • Arai, Y., Rick, A.R., Saylor, T., Faas, E., Tappero, R., Lanzirotti, A., Macroscopic and molecular-scale assessment of soil lead contamination impacted by seasonal dove hunting activities (2011) J. Soils Sediments, 11, p. 968. , 10.1007/S11368-011-0374-Z
  • Robertson, A.P., (1996) GoethiteHumic Acid Interactions and Their Effects on Copper(II) Binding, , Ph.D. Thesis, Stanford University, Stanford, CA
  • Hsu, P.H., Bates, T.F., Formation of X-ray amorphous and crystalline aluminium hydroxides (1964) Mineral. Mag, 33, p. 749. , 10.1180/ MINMAG196403326404
  • Stolpe, B., Guo, L., Shiller, A.M., Aiken, G.R., Abundance, size distributions and trace-element binding of organic and iron-rich nanocolloids in Alaskan rivers, as revealed by field-flow fractionation and ICP-MS (2013) Geochim. Cosmochim. Acta, 105, p. 221. , 10.1016/J.GCA.2012.11.018
  • Tan, W., Xiong, J., Li, Y., Wang, M., Weng, L., Koopal, L.K., Proton binding to soil humic and fulvic acids: Experiments and NICA- Donnan modeling (2013) Colloids Surf. A Physicochem. Eng. Asp, 436, p. 1152. , 10.1016/J.COLSURFA.2013.08.010
  • Browne, B.A., Driscoll, C.T., Ph-dependent binding of aluminum by a fulvic acid (1993) Environ. Sci. Technol, 27, p. 915. , 10.1021/ ES00042A014
  • Pinheiro, J.P., Mota, A.M., Benedetti, M.F., Lead and calcium binding to fulvic acids: Salt effect and competition (1999) Environmental Science and Technology, 33 (19), pp. 3398-3404. , DOI 10.1021/es990210f
  • Cabaniss, S.E., Shuman, M.S., Copper binding by dissolved organic matter: I. Suwannee River fulvic acid equilibria (1988) Geochim. Cosmochim. Acta, 52, p. 185. , 10.1016/0016-7037(88)90066-X
  • Christl, I., Milne, C.J., Kinniburgh, D.G., Kretzschmar, R., Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 2. Metal binding (2001) Environmental Science and Technology, 35 (12), pp. 2512-2517. , DOI 10.1021/es0002520
  • Benedetti, M.F., Milne, C.J., Kinniburgh, D.G., Van Riemsdijk, W.H., Koopal, L.K., Metal ion binding to humic substances: Application of the non-ideal competitive adsorption model (1995) Environ. Sci. Technol, 29, p. 446. , 10.1021/ES00002A022
  • Mota, A.M., Rato, A., Brazia, C., Gonçalves, M.L.S., Competition of Al3 in complexation of humic matter with Pb2 : A comparative study with other ions (1996) Environ. Sci. Technol, 30, p. 1970. , 10.1021/ ES9507123
  • Plaza, C., Senesi, N., Polo, A., Brunetti, G., Acid-base properties of humic and fulvic acids formed during composting (2005) Environmental Science and Technology, 39 (18), pp. 7141-7146. , DOI 10.1021/es050613h
  • Ritchie, J.D., Perdue, E.M., Proton-binding study of standard and reference fulvic acids, humic acids, and natural organicmatter (2003) Geochim. Cosmochim. Acta, 67, p. 85. , 10.1016/S0016-7037(02)01044--Rftxt

Citas:

---------- APA ----------
Montenegro, A.C., Orsetti, S. & Molina, F.V. (2014) . Modelling proton and metal binding to humic substances with the NICA-EPN model. Environmental Chemistry, 11(3), 318-332.
http://dx.doi.org/10.1071/EN13214
---------- CHICAGO ----------
Montenegro, A.C., Orsetti, S., Molina, F.V. "Modelling proton and metal binding to humic substances with the NICA-EPN model" . Environmental Chemistry 11, no. 3 (2014) : 318-332.
http://dx.doi.org/10.1071/EN13214
---------- MLA ----------
Montenegro, A.C., Orsetti, S., Molina, F.V. "Modelling proton and metal binding to humic substances with the NICA-EPN model" . Environmental Chemistry, vol. 11, no. 3, 2014, pp. 318-332.
http://dx.doi.org/10.1071/EN13214
---------- VANCOUVER ----------
Montenegro, A.C., Orsetti, S., Molina, F.V. Modelling proton and metal binding to humic substances with the NICA-EPN model. Environ. Chem. 2014;11(3):318-332.
http://dx.doi.org/10.1071/EN13214