Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A common stress on plants is NaCl-derived soil salinity. Genus Lotus comprises model and economically important species, which have been studied regarding physiological responses to salinity. Leaf area ratio (LAR), root length ratio (RLR) and their components, specific leaf area (SLA) and leaf mass fraction (LMF) and specific root length (SRL) and root mass fraction (RMF) might be affected by high soil salinity. We characterised L. tenuis, L. corniculatus, L. filicaulis, L. creticus, L. burtii and L. japonicus grown under different salt concentrations (0, 50, 100 and 150 mm NaCl) on the basis of SLA, LMF, SRL and RMF using PCA. We also assessed effects of different salt concentrations on LAR and RLR in each species, and explored whether changes in these traits provide fitness benefit. Salinity (150 mm NaCl) increased LAR in L. burtii and L. corniculatus, but not in the remaining species. The highest salt concentration caused a decrease of RLR in L. japonicus Gifu, but not in the remaining species. Changes in LAR and RLR would not be adaptive, according to adaptiveness analysis, with the exception of SLA changes in L. corniculatus. PCA revealed that under favourable conditions plants optimise surfaces for light and nutrient acquisition (SLA and SRL), whereas at higher salt concentrations they favour carbon allocation to leaves and roots (LMF and RMF) in detriment to their surfaces. PCA also showed that L. creticus subjected to saline treatment was distinguished from the remaining Lotus species. We suggest that augmented carbon partitioning to leaves and roots could constitute a salt-alleviating mechanism through toxic ion dilution. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands

Registro:

Documento: Artículo
Título:Salt effects on functional traits in model and in economically important Lotus species
Autor:Uchiya, P.; Escaray, F.J.; Bilenca, D.; Pieckenstain, F.; Ruiz, O.A.; Menéndez, A.B.
Filiación:Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH/UNSAM-CONICET), Buenos Aires, Argentina
IEGEBA, UBA-CONICET – Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, PROPLAME-PRHIDEB (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Leaf area; leaf area ratio; leaf mass fraction; Lotus spp.; root length ratio; root mass fraction; salinity; specific root length; adaptation; biomass allocation; commercial species; environmental stress; fitness; herb; leaf area; physiological response; root system; salinity; soil property; Lotus corniculatus; Lotus creticus; Lotus filicaulis; Lotus tenuis
Año:2016
Volumen:18
Número:4
Página de inicio:703
Página de fin:709
DOI: http://dx.doi.org/10.1111/plb.12455
Título revista:Plant Biology
Título revista abreviado:Plant Biol.
ISSN:14358603
CODEN:PBIOF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14358603_v18_n4_p703_Uchiya

Referencias:

  • Blumwald, E., Sodium transport and salt tolerance in plants (2000) Current Opinion in Cell Biology, 12, pp. 431-434
  • Bompy, F., Lequeue, G., Imbert, D., Dulormne, M., Increasing fluctuations of soil salinity affect seedling growth performances and physiology in three Neotropical mangrove species (2014) Plant and Soil, 380, pp. 399-413
  • Brand, A., Monographie der Gattung Lotus (1898) Botanische Jahrbücher für Systematik, 25, pp. 166-232
  • Cabot, P., Pagès, J.M., Evaluación de la capacidad tapizante de cuatro especies silvestres y dos especies arbustivas ornamentales cultivadas (1997) Actas de Horticultura, 17, pp. 153-157
  • Callaway, R., Pennings, S.C., Richards, C.L., Phenotypic plasticity and interactions among plants (2003) Ecology, 84, pp. 1115-1128
  • Chen, L., Tiu, C.J., Peng, S., Siemann, E., Conspecific plasticity and invasion: invasive populations of Chinese tallow (Triadica sebifera) have performance advantage over native populations only in low soil salinity (2013) PLoS One, 8
  • Curtis, P.S., Lauchli, A., The role of leaf area development and photosynthetic capacity in determining growth of kenaf under moderate salt stress (1986) Australian Journal of Plant Physiology, 4, pp. 553-565
  • Degtjareva, G.V., Kramina, T.E., Sokoloff, D.D., Samigullin, T.H., Sandral, G., Valiejo-Roman, C.M., New data on nrITS phylogeny of Lotus (Leguminosae, Loteae) (2008) Wulfenia, 15, pp. 35-49
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W., InfoStat versión (2010) Universidad Nacional de Córdoba (Argentina), , http://www.infostat.com.ar, FCA
  • Donovan, L.A., Ludwig, F., Rosenthal, D.M., Rieseberg, L.H., Dudley, S.A., Phenotypic selection on leaf ecophysiological traits in Helianthus (2009) New Phytologist, 183, pp. 868-879
  • Dudley, S.A., Differing selection on plant physiological traits in response to environmental water availability: a test of adaptive hypotheses (1996) Evolution, 50, pp. 92-102
  • Echeverria, M., Scambato, A.A., Sannazzaro, A.I., Phenotypic plasticity with respect to salt stress response by Lotus glaber: the role of its AM fungal and rhizobial symbionts (2008) Mycorrhiza, 18, pp. 317-319
  • Echeverria, M., Sannazzaro, A.I., Ruiz, O.A., Menéndez, A.B., Modulatory effects of Mesorhizobium tianshanense and Glomus intraradices on plant proline and polyamine levels during early plant response of Lotus tenuis to salinity (2013) Plant and Soil, 364, pp. 69-79
  • Escaray, F.J., Menéndez, A.B., Gárriz, A., Pieckenstain, F.L., Estrella, M.J., Castagno, L.N., Carrasco, P., Ruiz, O.A., Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils (2012) Plant Science, 182, pp. 121-133
  • Escaray, F.J., Passeri, V., Babuin, M.F., Marco, F., Carrasco, P., Damiani, F., Pieckenstain, F.L., Ruiz, O.A., Lotus tenuis x L. corniculatus interspecific hybridization as a means to breed bloat-safe pastures and gain insight into the genetic control of proanthocyanidin biosynthesis in legumes (2014) BMC Plant Biology, 14, pp. 14-40
  • Evans, J.R., Poorter, H., Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain (2001) Plant, Cell and Environment, 24, pp. 755-767
  • Fort, F., Cruz, P., Catrice, O., Delbrut, A., Luzarreta, M., Stroia, C., Jouany, C., Root functional trait syndromes and plasticity drive the ability of grassland Fabaceae to tolerate water and phosphorus shortage (2015) Environmental and Experimental Botany, 110, pp. 62-72
  • Freschet, G.T., Swart, E.M., Cornelissen, J.H.C., Integrated plant phenotypic responses to contrasting above- and below-ground resources: key roles of specific leaf area and root mass fraction (2015) New Phytologist, 206, pp. 1247-1260
  • Gianoli, E., González-Teuber, M., Environmental heterogeneity and population differentiation in plasticity to drought in Convolvulus chilensis (Convolvulaceae) (2005) Evolutionary Ecology, 19, pp. 603-613
  • Handberg, K., Stougaard, J., Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics (1992) The Plant Journal, 2, pp. 487-496
  • He, T., Cramer, G., Growth and ion accumulation of two rapid-cycling Brassica species differing in salt tolerance (1993) Plant and Soil, 153, pp. 19-31
  • Hill, J.O., Simpson, R.J., Moore, A.D., Chapman, D.F., Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition (2006) Plant and Soil, 286, pp. 7-19
  • Hoagland, D.R., Arnon, D.I., The water-culture method for growing plants without soil (1950) California Agricultural Experiment Station Circular, 347, pp. 1-32
  • Hu, Y., Schmidhalter, U., Drought and salinity: a comparison of their effects on mineral nutrition of plants (2005) Journal of Plant Nutrition and Soil Science, 168, pp. 541-549
  • Ishikawa, S.I., Kachi, N., Differential salt tolerance of two Artemisia species growing in contrasting coastal habitats (2000) Ecological Research, 15, pp. 241-247
  • Karrenberg, S., Widmer, A., Ecologically relevant genetic variation from a non-Arabidopsis perspective (2008) Current Opinion in Plant Biology, 11, pp. 156-162
  • Kawaguchi, M., Lotus japonicus “Miyakojima” MG-20 an early-flowering accession suitable for indoor handling (2000) Journal of Plant Research, 113, pp. 507-509
  • Kawaguchi, M., Motomura, T., Imaizumi-Anraku, H., Akao, S., Kawasaki, S., Providing the basis for genomics in Lotus japonicus: the accessions Miyakojima and Gifu are appropriate crossing partners for genetic analyses (2001) Molecular Genetics and Genomics, 266, pp. 157-166
  • Kawaguchi, M., Pedrosa-Harand, A., Yano, K., Hayashi, M., Murooka, Y., Saito, K., Nagata, T., Grant, W.F., Lotus burttii takes a position of the third corner in the Lotus molecular genetics triangle (2005) DNA Research, 12, pp. 69-77
  • Lamers, J., Khamzina, A., Worbes, M., The analyses of physiological and morphological attributes of 10 tree species for early determination of their suitability to afforest degraded landscapes in the Aral Sea Basin of Uzbekistan (2006) Forest Ecology and Management, 221, pp. 249-259
  • Läuchli, A., Grattan, S.R., Plant growth and development under salinity stress (2007) Advances in molecular breeding toward drought and salt tolerant crops, pp. 1-32. , In, Jenks M.A., (Ed.), Springer, Berlin, Germany, pp, –
  • Lovelli, S., Perniola, M., Di Tommaso, T., Bochicchio, R., Amato, M., Specific root length and diameter of hydroponically-grown tomato plants under salinity (2012) Journal of Agronomy, 11, pp. 101-106
  • Marcelis, L.F.M., Heuvelink, E., Goudriaan, J., Modelling biomass production and yield of horticultural crops: a review (1998) Scientia Horticulturae, 74, pp. 83-111
  • Marschner, H., (1995) Mineral nutrition of higher plants, , (2nd edition)., Academic Press, London, UK
  • Melchiorre, M., Quero, G.E., Parola, R., Racca, R., Trippi, V.S., Lascano, R., Physiological characterization of four model Lotus diploid genotypes: L. japonicus (MG20 and Gifu), L. filicaulis, and L. burttii under salt stress (2009) Plant Science, 177, pp. 618-628
  • Melečková, Z., Dítě, D., Jun, P.E., Píš, V., Galvánek, D., Succession of saline vegetation in Slovakia after a large-scale disturbance (2014) Annales Botanici Fennici, 51, pp. 285-296
  • Minden, V., Andratschke, S., Spalke, J., Timmermann, H., Kleyer, M., Plant trait–environment relationships in salt marshes: Deviations from predictions by ecological concepts (2012) Perspectives in Plant Ecology, Evolution and Systematics, 14, pp. 183-192
  • Moriuchi, K.S., Winn, A.A., Relationships among growth, development and plastic response to environment quality in a perennial plant (2005) New Phytologist, 166, pp. 149-158
  • Munns, R., Tester, M., Mechanisms of salinity tolerance (2008) Annual Review of Plant Biology, 59, pp. 651-681
  • Murren, C.J., Pigliucci, M., Morphological responses to simulated wind in the genus Brassica (Brassicaceae): allopolyploids and their parental species (2005) American Journal of Botany, 92, pp. 810-818
  • Murren, C.J., Pendleton, N., Pigliucci, M., Evolution of phenotypic integration in Brassica (Brassicaceae) (2002) American Journal of Botany, 89, pp. 655-663
  • Nguyen, H.T., Stanton, D.E., Schmitz, N., Farquhar, G.D., Ball, M.C., Growth responses of the mangrove Avicennia marina to salinity: development and function of shoot hydraulic systems require saline conditions (2015) Annals of Botany, 115, pp. 397-407
  • Nicotra, A.B., Atkin, O.K., Bonser, S.P., Davidson, A.M., Finnegan, E.J., Mathesius, U., Poot, P., van Kleunen, M., Plant phenotypic plasticity in a changing climate (2010) Trends in Plant Science, 15, pp. 1-9
  • Nieves, M., Nieves-Cordones, M., Poorter, H., Simón, M.D., Leaf nitrogen productivity is the major factor behind the growth reduction induced by long-term salt stress (2011) Tree Physiology, 31, pp. 92-101
  • Niinemets, Ü., Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs (2001) Ecology, 82, pp. 453-469
  • O'Donoughue, L.S., Raelson, J.V., Grant, W.F., A morphological study of interspecific hybrids in the genus Lotus (Fabaceae) (1990) Canadian Journal of Botany, 68, pp. 803-812
  • Ostonen, I., Lõhmus, K., Helmisaari, H.-S., Truu, J., Meel, S., Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests (2007) Tree Physiology, 27, pp. 1627-1634
  • Paz, R.C., Rocco, R.A., Reinoso, H., Menéndez, A.B., Pieckenstain, F.L., Ruiz, O.A., Comparative study of alkaline, saline, and mixed saline–alkaline stresses with regard to their effects on growth, nutrient accumulation, and root morphology of Lotus tenuis (2012) Journal of Plant Growth Regulation, 31, pp. 448-459
  • Pigliucci, M., Schlichting, C.D., Reaction norms of Arabidopsis. IV. Relationships between plasticity and fitness (1996) Heredity, 76, pp. 427-436
  • Pigliucci, M., Schlichting, C., Jones, C., Schwenk, K., Developmental reaction norms: the interactions among allometry, ontogeny and plasticity (1996) Plant Species Biology, 11, pp. 69-85
  • Poorter, H., Niklas, K.J., Reich, P.B., Oleksyn, J., Poot, P., Mommer, L., Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control (2012) New Phytologist, 193, pp. 30-50
  • Praxedes, S.C., De Lacerda, C.F., DaMatta, F.M., Prisco, J.T., Gomes-Filho, E., Salt tolerance is associated with differences in ion accumulation, biomass allocation and photosynthesis in cowpea cultivars (2010) Journal of Agronomy and Crop Science, 196, pp. 193-204
  • Rejili, M., Vadel, A.M., Guetet, A., Neffatti, M., Effect of NaCl on the growth and the ionic balance K+/Na+ of two populations of Lotus creticus (L.) (Papilionaceae) (2007) South African Journal of Botany, 73, pp. 623-631
  • Rijkers, T., Pons, T.L., Bongers, F., The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade tolerance (2000) Functional Ecology, 14, pp. 77-86
  • Rubinigg, M., Posthumus, F., Ferschke, M., Elzenga, J.T.M., Stulen, I., Effects of NaCl salinity on 15N-nitrate fluxes and specific root length in the halophyte Plantago maritima L (2003) Plant and Soil, 250, pp. 201-213
  • Ryser, P., Intra- and interspecific variation in root length, root turnover and the underlying parameters (1998) Inherent variation in plant growth physiological mechanisms and ecological consequences, pp. 441-465. , In, Lambers H., Poorter H., Van Vuuren M.M.I., (Eds), Backhuys, Leiden, the Netherlands, pp, –
  • Ryser, P., Lambers, H., Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply (1995) Plant and Soil, 170, pp. 251-265
  • Sanchez, D.H., Redestig, H., Krämer, U., Udvardi, M.K., Kopka, J., Metabolome-ionome-biomass interactions (2008) Plant Signaling & Behavior, 3, pp. 1-3
  • Sanchez, D.H., Szymanski, J., Erban, A., Mining for robust transcriptional and metabolic responses to long-term salt stress: a case study on the model legume Lotus japonicus (2010) Plant, Cell and Environment, 33, pp. 468-480
  • Sanchez, D.H., Pieckenstain, F.L., Escaray, F.J., Erban, A., Kraemer, U., Udvardi, M.K., Kopka, J., Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis (2011) Plant, Cell and Environment, 34, pp. 605-617
  • Sanchez, D.H., Pieckenstain, F.L., Szymanski, J., Erban, A., Bromke, M., Hannah, M.A., Kraemer, U., Udvardi, M.K., Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics (2011) PLoS One, 6
  • Sánchez-Blanco, M.J., Morales, M.A., Torrecillas, A., Alarcón, J.J., Diurnal and seasonal osmotic potential changes in Lotus creticus plants grown under saline stress (1998) Plant Science, 136, pp. 1-10
  • Sannazzaro, A.I., Ruiz, O.A., Albertó, E.O., Menéndez, A.B., Alleviation of salt stress in Lotus glaber by Glomus intraradices (2006) Plant and Soil, 285, pp. 279-287
  • Sannazzaro, A.I., Echeverria, M., Albertó, E.O., Ruiz, O.A., Menéndez, A.B., Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza (2007) Plant Physiology and Biochemistry, 45, pp. 39-46
  • Shennan, C., Hunt, R., Macrobbie, E.A.C., Salt tolerance in Aster tripolium L. I. The effect of salinity on growth (1987) Plant, Cell and Environment, 10, pp. 59-65
  • Somaroo, B.H., Grant, W.F., Interspecific hybridization between diploid species of Lotus (Leguminosae) (1971) Genetica, 42, pp. 353-367
  • Stevanato, P., Gui, G., Cacco, G., Biancardi, E., Abenavoli, M.R., Romano, A., Sorgonà, A., Morpho-physiological traits of sugar beet exposed to salt stress (2013) International Sugar Journal, 115, pp. 756-765
  • Strogonov, B.P., (1969) Physiological basis of salt tolerance of plants, p. 279. , (Translation). Akadamii nauk, Moscow, SSSR
  • Sz.-Borsos, O., Somaroo, B.H., Grant, W.F., A new diploid species of Lotus (Leguminosae) in Pakistan (1972) Canadian Journal of Botany, 50, pp. 1865-1870
  • Valluru, R., Link, J., Claupein, W., Consequences of early chilling stress in two Triticum species: plastic responses and adaptive significance (2012) Plant Biology, 14, pp. 641-651
  • Van Kleunen, M., Fischer, M., Constraints on the evolution of adaptive phenotypic plasticity in plants (2005) New Phytologist, 166, pp. 49-60
  • Villar, R., Merino, J., Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems (2001) New Phytologist, 151, pp. 213-226
  • Wade, M.J., Kalisz, S., The Causes of Natural Selection (1990) Evolution, 44, pp. 1947-1955
  • Wang, L., Mu, M., Li, X., Lin, P., Wang, W., Differentiation between true mangroves and mangrove associates based on leaf traits and salt contents (2010) Journal of Plant Ecology, 1, pp. 1-10
  • Weiner, J., Allocation, plasticity and allometry in plants (2004) Perspectives in Plant Ecology, Evolution and Systematics, 6, pp. 207-215
  • Wright, I.J., Reich, P.B., Westoby, M., Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats (2001) Functional Ecology, 15, pp. 423-434
  • Xu, G., Yu, D., Xie, J., Tang, L., Li, Y., What makes Haloxylon persicum grow on sand dunes while H. ammodendron grows on interdune lowlands: a proof from reciprocal transplant experiments (2014) Journal of Arid Land, 6, pp. 581-591
  • Zapata, J.M.C., Nieves, M., Cerdá, A., Improvement in growth and salt resistance of lemon (Citrus limon) trees by an interstock-induced mechanism (2003) Tree Physiology, 23, pp. 879-888
  • Zapata, J.M.C., Cerdá, A., Nieves, M., Interstock-induced mechanism of increased growth and salt resistance of orange (Citrus sinensis) trees (2004) Tree Physiology, 24, pp. 1109-1117
  • Zhu, J., Plant salt tolerance (2001) Trends in Plant Science, 6, pp. 66-71

Citas:

---------- APA ----------
Uchiya, P., Escaray, F.J., Bilenca, D., Pieckenstain, F., Ruiz, O.A. & Menéndez, A.B. (2016) . Salt effects on functional traits in model and in economically important Lotus species. Plant Biology, 18(4), 703-709.
http://dx.doi.org/10.1111/plb.12455
---------- CHICAGO ----------
Uchiya, P., Escaray, F.J., Bilenca, D., Pieckenstain, F., Ruiz, O.A., Menéndez, A.B. "Salt effects on functional traits in model and in economically important Lotus species" . Plant Biology 18, no. 4 (2016) : 703-709.
http://dx.doi.org/10.1111/plb.12455
---------- MLA ----------
Uchiya, P., Escaray, F.J., Bilenca, D., Pieckenstain, F., Ruiz, O.A., Menéndez, A.B. "Salt effects on functional traits in model and in economically important Lotus species" . Plant Biology, vol. 18, no. 4, 2016, pp. 703-709.
http://dx.doi.org/10.1111/plb.12455
---------- VANCOUVER ----------
Uchiya, P., Escaray, F.J., Bilenca, D., Pieckenstain, F., Ruiz, O.A., Menéndez, A.B. Salt effects on functional traits in model and in economically important Lotus species. Plant Biol. 2016;18(4):703-709.
http://dx.doi.org/10.1111/plb.12455