Artículo

Paz, R.C.; Reinoso, H.; Espasandin, F.D.; González Antivilo, F.A.; Sansberro, P.A.; Rocco, R.A.; Ruiz, O.A.; Menéndez, A.B. "Akaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots" (2014) Plant Biology. 16(6):1042-1049
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Saline, alkaline and mixed saline-alkaline conditions frequently co-occur in soil. In this work, we compared these plant stress sources on the legume Lotus tenuis, regarding their effects on shoot growth and leaf and stem anatomy. In addition, we aimed to gain insight on the plant physiological status of stressed plants. We performed pot experiments with four treatments: control without salt (pH = 5.8; EC = 1.2 dS·m-1) and three stress conditions, saline (100 mm NaCl, pH = 5.8; EC = 11.0 dS·m-1), alkaline (10 mm NaHCO3, pH = 8.0, EC = 1.9 dS·m-1) and mixed salt-alkaline (10 mm NaHCO3 + 100 mm NaCl, pH = 8.0, EC = 11.0 dS·m-1). Neutral and alkaline salts produced a similar level of growth inhibition on L. tenuis shoots, whereas their mixture exacerbated their detrimental effects. Our results showed that none of the analysed morpho-anatomical parameters categorically differentiated one stress from the other. However, NaCl- and NaHCO3-derived stress could be discriminated to different extents and/or directions of changes in some of the anatomical traits. For example, alkalinity led to increased stomatal opening, unlike NaCl-treated plants, where a reduction in stomatal aperture was observed. Similarly, plants from the mixed saline-alkaline treatment characteristically lacked palisade mesophyll in their leaves. The stem cross-section and vessel areas, as well as the number of vascular bundles in the sectioned stem were reduced in all treatments. A rise in the number of vessel elements in the xylem was recorded in NaCl-treated plants, but not in those treated exclusively with NaHCO3.. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

Registro:

Documento: Artículo
Título:Akaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots
Autor:Paz, R.C.; Reinoso, H.; Espasandin, F.D.; González Antivilo, F.A.; Sansberro, P.A.; Rocco, R.A.; Ruiz, O.A.; Menéndez, A.B.
Filiación:Unidad de Biotecnología 1, IIB-IINTECH/UNSAM-CONICET, Chascomús, Buenos Aires, Argentina
Facultad de Ciencias Agrarias (FCA), Instituto de Biotecnología Agrícola de Mendoza (IBAM), Mendoza, Argentina
Laboratorio de Morfología Vegetal, Departamento de Ciencias Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
Facultad de Ciencias Agrarias (UNNE), Instituto de Botánica del Nordeste (IBONE-CONICET), Corrientes, Argentina
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Alkalinity; Osmotic potential; Proline; Salinity; Shoot anatomy; Transpiration; alkalinity; anatomy; inhibition; leaf area; legume; morphology; osmoregulation; physiological response; salinity tolerance; shoot growth; stomatal conductance; xylem; Lotus tenuis; proline; sodium chloride; anatomy and histology; chemistry; drug effects; evapotranspiration; Lotus; metabolism; osmotic pressure; physiological stress; physiology; plant epidermis; plant leaf; plant stem; salinity; Lotus; Osmotic Pressure; Plant Epidermis; Plant Leaves; Plant Stems; Plant Transpiration; Proline; Salinity; Sodium Chloride; Stress, Physiological
Año:2014
Volumen:16
Número:6
Página de inicio:1042
Página de fin:1049
DOI: http://dx.doi.org/10.1111/plb.12156
Título revista:Plant Biology
Título revista abreviado:Plant Biol.
ISSN:14358603
CODEN:PBIOF
CAS:proline, 147-85-3, 7005-20-1; sodium chloride, 7647-14-5; Proline; Sodium Chloride
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14358603_v16_n6_p1042_Paz

Referencias:

  • Alam, S.M., Mehdi Naqvi, S.S., Ansari, R., Impact of soil pH on nutrient uptake by crop plants (1999) Handbook of plant and crop stress, pp. 51-60. , Pessarakli M. (Ed.), CRC Press, Boca Raton, FL, USA
  • Boughalleb, F., Denden, M., Tiba, B.B., Anatomical changes induced by increasing NaCl salinity in three fodder shrubs, Nitraria retusa, Atriplex halimus and Medicago arborea (2009) Acta Physiologiae Plantarum, 31, pp. 947-960
  • Boyer, J.S., Wong, S.C., Farquhar, C.D., CO, and water vapor exchange across the leaf cuticle (epidermis) at various water potentials (1997) Plant Physiology, 114, pp. 185-191
  • Cachorro, P., Ortiz, A., Barcelo, A.R., Cerda, A., Lignin deposition in vascular tissues of Phaseolus vulgaris roots in response to salt stress (1993) Phyton - Annales Rei Botanicae, 33, pp. 33-40
  • Cartmill, A., Alarcón, A., Valdez-Aguilar, L.A., Arbuscular mycorrhizal fungi enhance tolerance of Rosa multiflora cv. Burr to bicarbonate in irrigation water (2007) Journal of Plant Nutrition, 30, pp. 1517-1540
  • Cartmill, A.D., Valdez-Aguilar, L.A., Bryan, D.L., Alarcón, A., Arbuscular mycorrhizal fungi enhance tolerance of Vinca to high alkalinity in irrigation water (2008) Scientia Horticulturae, 115, pp. 275-284
  • Costa, J.L., García, F.O., Respuesta de un pastizal natural a la fertilización con fósforo y nitrógeno en un natracuol (1998) Revista de Investigaciones Agropecuarias, 28, pp. 31-39
  • Cuin, A.T., Shabala, S., Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots (2005) Plant and Cell Physiology, 46, pp. 1924-1933
  • Cuin, A.T., Shabala, S., Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots (2007) Plant, Cell and Environment, 30, pp. 875-885
  • D'Ambrogio de Argüeso, A., (1986) Manual de Técnicas en Histología Veg Hemisferio Sur, pp. 50-67. , Hemisferica Sur, Buenos Aires, Argentina
  • De Vos, A.C., Broekman, R., Groot, M.P., Rozema, J., Ecophysiological response of Crambe maritima to airborne and soil-borne salinity (2010) Annals of Botany, 105, pp. 925-937
  • Delauney, A.J., Verma, D.P.S., Proline biosynthesis and osmoregulation in plants (1993) The Plant Journal, 4, pp. 215-223
  • Dolatabadian, A., Modarressanavy, S.A.M., Ghanati, F., Effect of salinity on growth, xylem structure and anatomical characteristics of soybean (2011) Notulae Scientia Biologicae, 3, pp. 41-45
  • Gharsalli, M., Zribi, K., Hajji, M., Physiological responses of pea to iron deficiency induced by bicarbonate (2001) Plant nutrition - food security and sustainability of agro-ecosystems, pp. 606-607. , Horst W., Schenk M.K., Bürkert A., Claassen N., Flessa H., Frommer W.B., Goldbach H.E., Olfs H.-W., Römheld V., Sattelmacher B., Schmidhalter U., Schubert S., von Wirén N., Wittenmayer L. (Eds), Springer, Berlin, Germany
  • Guo, X.P., Tackmore, M., Obai, K., Salahou, M.K., The combined effects of salinity and water stress on the growth and yield quality of tomato (2013) Applied Mechanics and Materials, 295, pp. 2265-2273
  • Habba, I.E., Abd El Aziz, N.G., Metwally, S.A., Mazhar, A.A.M., Response of growth and chemical constituents in Khaya sengalensis to salinity and gypsum under calcareous soil conditions (2013) World Applied Sciences Journal, 22, pp. 447-452
  • Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J., Plant cellular and molecular responses to high salinity (2000) Annual Review of Plant Physiology, 51, pp. 463-499
  • Hong, Z.L., Lakkineni, K., Zhang, Z.M., Verma, D.P.S., Removal of feedback inhibition of Δ1-pyrroline-5-carboxylated synthetase results in increased proline accumulation and protection of plants from osmotic stress (2000) Plant Physiology, 122, pp. 1129-1136
  • Johansen, D.A., (1940) Plant microtechnique, pp. 1-523. , McGraw-Hill, New York, USA
  • Kadohama, N., Goh, T., Ohnishi, M., Fukaki, H., Mimura, T., Sudden collapse of vacuoles in Saintpaulia sp. palisade cells induced by a rapid temperature decrease (2013) PLoS ONE, 8, p. e57259
  • Kiliç, S., Cavuşoğlu, K., Kabar, K., Effects of 24-epibrassinolide on salinity stress induced inhibition of seed germination, seedling growth and leaf anatomy of barley (2007) Journal of Science, 2, pp. 41-52
  • Kukavica, B., Morina, F., Janjiæ, N., Boroja, N., Jovanoviæ, L., Veljoviæ-Jovanoviæ, D., Effects of mixed saline and alkaline stress on the morphology and anatomy of Pisum sativum: the role of peroxidase and ascorbate oxidase in growth regulation (2013) Archives of Biological Sciences, 65, pp. 265-278
  • Kulkarni, M., Borse, T., Chaphalkar, S., Mining anatomical traits: a novel modeling approach for increased water use efficiency under drought conditions in plants (2008) Czech Journal of Genetics and Plant Breeding, 44, pp. 11-21
  • Läuchli, A., Lüttge, U., (2002) Salinity: Environment - Plants - Molecules, p. 552. , Springer, Berlin, Germany, pp
  • Leon, J.M., Bukovac, M.J., Cuticle development and surface morphology of olive leaves with reference to penetration of foliar-applied chemicals (1978) Journal of the American Society of Horticultural Science, 103, pp. 465-472
  • Li, P.H., Zhang, H., Wang, B.S., Ionic homeostasis of plants under salt stress (2003) Acta Botanica Boreal-Occident Sinica, 23, pp. 1810-1817
  • Li, R., Shi, F., Fukuda, K., Interactive effects of salt and alkali stresses on seed germination, germination recovery, and seedling growth of a halophyte Spartina alterniflora (Poaceae) (2010) South African Journal of Botany, 76, pp. 380-387
  • Lovy-Wheeler, A., Kunkel, J.G., Allwood, E.G., Hussey, P.J., Hepler, P.K., Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily (2006) The Plant Cell, 18, pp. 2182-2193
  • Magné, C., Larher, F., High sugar content of extracts interferes with colorimetric determination of amino acids and free proline (1992) Analytical Biochemistry, 200, pp. 115-118
  • Mandre, M., Klõšeiko, J., Lukjanova, A., Tullus, A., Hybrid aspen responses to alkalization of soil: growth, leaf structure, photosynthetic rate and carbohydrates (2012) Trees, 26, pp. 1847-1858
  • Marcum, K.B., Saline tolerance physiology in grasses (2006) Ecophysiology of high salinity tolerant plants, pp. 157-172. , Khan M. A., Weber D. J. (Eds), Springer, Berlin, Germany
  • Mittler, R., Oxidative stress, antioxidants and stress tolerance (2002) Trends in Plant Science, 7, pp. 405-410
  • Munns, R., Na+, K+ and C1- xylem sap flowing to shoots of NaCl-treated barley (1985) Journal of Experimental Botany, 36, pp. 1032-1042
  • Munns, R., Comparative physiology of salt and water stress (2002) Plant, Cell & Environment, 25, pp. 239-250
  • Nawaz, T., Hameed, M., Ashraf, M., Batool, S., Naz, N., Modifications in root and stem anatomy for water conservation in some diverse blue panic (Panicum antidotale Retz.) ecotypes under drought stress (2013) Arid Land Research and Management, 27, pp. 286-297
  • Norris, R.R., Bukovac, M.J., Structure of the pear leaf cuticle with special reference to cuticular penetration (1968) American Journal of Botany, 55, pp. 975-983
  • Orsini, F., Accorsi, M., Gianquinto, G., Dinelli, G., Antognoni, F., Ruiz Carrasco, K.B., Martínez, E.A., Biondi, S., Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism (2011) Functional Plant Biology, 38, pp. 818-831
  • Paz, R.C., Rocco, R.A., Reinoso, H., Menéndez, A.B., Pieckenstain, F.L., Ruiz, A.O., Comparative study of alkaline, saline, and mixed saline-alkaline stresses with regard to their effects on growth, nutrient accumulation, and root morphology of Lotus tenuis (2012) Journal of Plant Growth Regulation, 31, pp. 448-459
  • Qadir, M., Shams, M., Some agronomic and physiological aspects of salt tolerance in cotton (Gossypium hirsutum L.) (1997) Journal of Agronomy and Crop Science, 179, pp. 101-106
  • Salisbury, E.J., On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora (1927) Philosophical Transactions of the Royal Society of London B, 216, pp. 1-65
  • dos Santos, J.B., dos Santos, D.B., de Azevedo, C.A.V., Rebequi, A.M., Cavalcante, L.F., Cavalcante, I.H.L., Comportamento morfofisiológico da mamoneira BRS energia submetida à irrigação com água salina [Morphophysiological behavior of castor bean brs energia submitted to irrigation with saline water] (2013) Revista Brasileira de Engenharia Agrícola e Ambiental, 17, pp. 145-152
  • Scott, F.M., Lipid deposition in the intercellular space (1964) Nature, 203, pp. 164-165
  • Scott, F.M., Cell wall surface of the higher plants (1966) Nature, 210, pp. 1015-1017
  • Shabala, L., Mackay, A., Tian, Y., Jacobsen, S., Zhou, D., Shabala, S., Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium chinoa) (2012) Physiologia Plantarum, 146, pp. 26-38
  • Shah, K., Dubey, R.S., Effect of cadmium on proline accumulation and ribonuclease activity in rice seedlings: role of proline as a possible enzyme protectant (1998) Biologia Plantarum, 40, pp. 121-130
  • Shi, D., Sheng, Y., Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors (2005) Environmental and Experimental Botany, 54, pp. 8-21
  • Shi, D.C., Wang, D., Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag (2005) Plant and Soil, 271, pp. 15-26
  • Shi, D., Zhao, K., Effects of sodium chloride and carbonate on growth of Puccinellia tenuiflora and on present state of mineral elements in nutrient solution (1997) Acta Pratacult Sinica, 6, pp. 51-61
  • Smirnoff, N., Cumbes, Q.J., Hydroxyl radical scavenging activity of compatible solutes (1989) Phytochemistry, 28, pp. 1057-1060
  • Soltekin, O., Tüzel, Y., Öztekin, G.B., Tüzel, I.H., Response of pepino (Solanum muricatum Aiton) to salinity (2012) Acta Horticulturae, 960, pp. 425-431
  • Tester, M., Davenport, R., Na+ tolerance and Na+ transport in plants (2003) Annals of Botany, 91, pp. 503-527
  • Troll, W., Lindsley, J., The photometric methods for determination of proline (1955) Journal of Biological Chemistry, 215, pp. 655-660
  • Valdez-Aguilar, L.A., Effect of alkalinity in irrigation water on selected greenhouse crops (2004), Ph.D. thesis in Horticulture, Texas A&M University, Texas, USA; Valdez-Aguilar, L.A., Reed, D.W., Influence of potassium substitution by rubidium and sodium on growth, ion accumulation, and ion partitioning in bean under high alkalinity (2008) Journal of Plant Nutrition, 31, pp. 867-883
  • Wang, Y., Guo, J.X., Meng, Q.L., Cui, X.Y., Physiological responses of Krishum (Iris lactea Pall. var. chinensis Koidz) to neutral and alkaline salts (2008) Journal of Agronomy and Crop Science, 194, pp. 429-437
  • Wilkinson, S., Davies, W.J., Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell which involves the suppression of saturable ABA uptake by the epidermal symplast (1997) Plant Physiology, 113, pp. 559-573
  • Yang, C., Chong, J., Changyou, L., Kim, C., Shi, D., Wang, D., Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions (2007) Plant and Soil, 294, pp. 263-276
  • Yang, C., Shi, D., Wang, D., Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.) (2008) Plant Growth Regulation, 56, pp. 179-190
  • Zhang, P., Fu, J., Hu, L., Effects of alkali stress on growth, free amino acid and carbohydrate metabolism in Kentucky bluegrass (Poa pratensis) (2012) Ecotoxicology, 21, pp. 1911-1918

Citas:

---------- APA ----------
Paz, R.C., Reinoso, H., Espasandin, F.D., González Antivilo, F.A., Sansberro, P.A., Rocco, R.A., Ruiz, O.A.,..., Menéndez, A.B. (2014) . Akaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots. Plant Biology, 16(6), 1042-1049.
http://dx.doi.org/10.1111/plb.12156
---------- CHICAGO ----------
Paz, R.C., Reinoso, H., Espasandin, F.D., González Antivilo, F.A., Sansberro, P.A., Rocco, R.A., et al. "Akaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots" . Plant Biology 16, no. 6 (2014) : 1042-1049.
http://dx.doi.org/10.1111/plb.12156
---------- MLA ----------
Paz, R.C., Reinoso, H., Espasandin, F.D., González Antivilo, F.A., Sansberro, P.A., Rocco, R.A., et al. "Akaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots" . Plant Biology, vol. 16, no. 6, 2014, pp. 1042-1049.
http://dx.doi.org/10.1111/plb.12156
---------- VANCOUVER ----------
Paz, R.C., Reinoso, H., Espasandin, F.D., González Antivilo, F.A., Sansberro, P.A., Rocco, R.A., et al. Akaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots. Plant Biol. 2014;16(6):1042-1049.
http://dx.doi.org/10.1111/plb.12156