Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8 TeV with a total integrated luminosity of nearly 30 fb - 1 . The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report. © 2018, CERN for the benefit of the ATLAS collaboration.

Registro:

Documento: Artículo
Título:Operation and performance of the ATLAS Tile Calorimeter in Run 1
Autor:Aaboud, M. et al.
Este artículo contiene 2950 autores, consultelos en el artículo en formato pdf.
Filiación: Este artículo contiene 2950 autores con sus filiaciones, consultelas en el artículo en formato pdf.
Año:2018
Volumen:78
Número:12
DOI: http://dx.doi.org/10.1140/epjc/s10052-018-6374-z
Título revista:European Physical Journal C
Título revista abreviado:Eur. Phys. J. C
ISSN:14346044
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14346044_v78_n12_p_Aaboud

Referencias:

  • The ATLAS Experiment at the CERN Large Hadron Collider (2008) JINST, 3. , https://doi.org/10.1088/1748-0221/3/08/S08003
  • Evans, L., Bryant, P., LHC Machine (2008) JINST, 3. , https://doi.org/10.1088/1748-0221/3/08/S08001, (ed. by L. Evans)
  • (1996), http://cds.cern.ch/record/331062, ATLAS tile calorimeter: Technical Design Report, Accessed 15 Dec1996; Abdallah, J., Mechanical construction and installation of the ATLAS tile calorimeter (2013) JINST, 8, p. T11001
  • Abdallah, J., The optical instrumentation of the ATLAS Tile Calorimeter (2013) JINST, 8, p. P01005
  • Readiness of the ATLAS Tile Calorimeter for LHC collisions (2010) Eur. Phys. J. C, 70, p. 1193. , https://doi.org/10.1140/epjc/s10052-010-1508-y, [physics.ins-det]
  • Anderson, K., Design of the front-end analog electronics for the ATLAS tile calorimeter (2005) Nucl. Instrum. Methods A, 551, p. 469
  • Adragna, P., A PMT-Block test bench (2006) Nucl. Instrum. Methods A, 564, p. 597
  • Berglund, S., The ATLAS Tile Calorimeter digitizer (2008) JINST, 3. , http://stacks.iop.org/1748-0221/3/i=01/a=P01004
  • Luminosity determination in pp collisions at √s = 8 TeV using the ATLAS detector at the LHC (2016) Eur. Phys. J. C, 76, p. 653. , https://doi.org/10.1140/epjc/s10052-016-4466-1, [hep-ex]
  • Parra, G.G., Integrator Based Readout in Tile Calorimeter of the ATLAS Experiment (2012) Phys. Procedia, 37, p. 266
  • Valero, A., ATLAS TileCal Read Out Driver production (2007) JINST, 2, p. P05003
  • Aubert, B., Construction, assembly and tests of the ATLAS electromagnetic barrel calorimeter (2006) Nucl. Instrum. Methods A, 558, p. 388
  • Aleksa, M., Construction, assembly and tests of the ATLAS electromagnetic end-cap calorimeter (2008) JINST, 3, p. P06002
  • Gingrich, D.M., Construction, assembly and testing of the ATLAS hadronic end-cap calorimeter (2007) JINST, 2, p. P05005
  • Artamonov, A., (2008) The ATLAS Forward Calorimeter. JINST, 3, p. P02010
  • Performance of the ATLAS Trigger System in 2010 (2012) Eur. Phys. J. C, 72, p. 1849. , https://doi.org/10.1140/epjc/s10052-011-1849-1, [hep-ex]
  • Studies of the performance of the ATLAS detector using cosmic-ray muons (2011) Eur. Phys. J, C71, p. 1593. , https://doi.org/10.1140/epjc/s10052-011-1593-6, [physics.ins-det]
  • The ATLAS Simulation Infrastructure (2010) Eur. Phys. J. C, 70, p. 823. , https://doi.org/10.1140/epjc/s10052-010-1429-9, [physics.ins-det]
  • Agostinelli, S., GEANT4–a simulation toolkit (2003) Nucl. Instrum. Methods A, 506, p. 250
  • Ribon, A., (2010) Status of Geant4 Hadronic Physics for the Simulation of LHC Experiments at the Start of the LHC Physics Program, , http://lcgapp.cern.ch/project/docs/noteStatusHadronic2010.pdf, Accessed 20 July 2010
  • Budagov, J., (2006) Study of Tilecal Sampling Fraction for Improvement of Monte-Carlo Data Reconstruction, , http://cds.cern.ch/record/962065/, TILECAL-PUB-2006-006, Accessed 13 June 2006
  • Sjostrand, T., Mrenna, S., Skands, P., PYTHIA 6.4 physics and manual (2006) JHEP, 5. , https://doi.org/10.1088/1126-6708/2006/05/026
  • Sjostrand, T., Mrenna, S., Skands, P., A brief introduction to PYTHIA 8.1 (2008) Comput. Phys. Commun, 178, p. 852. , https://doi.org/10.1016/j.cpc.2008.01.036, [hep-ph]
  • Cleland, W., Stern, E., Signal processing considerations for liquid ionization calorimeters in a high rate environment (1994) Nucl. Instrum. Methods A, 338, p. 467
  • Wigmans, R., (2000) Calorimetry: Energy Measurement in Particle Physics. International Series of Monographs on Physics, , Clarendon Press, Oxford, 9780198502968
  • Adragna, P., Testbeam studies of production modules of the ATLAS Tile Calorimeter (2009) Nucl. Instrum. Methods A, 606, p. 362
  • Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1 (2017) Eur. Phys. J, C77, p. 490. , https://doi.org/10.1140/epjc/s10052-017-5004-5, [hep-ex]
  • Fiolhais, M.C.N., (2011) Correlated Noise Unfolding on a Hadronic Calorimeter, , http://cdsweb.cern.ch/record/1331174/, Accessed 22 Feb 2011
  • Starchenko, E., Cesium monitoring system for ATLAS Tile Hadron Calorimeter (2002) Nucl. Instrum. Methods A, 494, p. 381
  • Viret, S., LASER monitoring system for the ATLAS Tile Calorimeter (2010) Nucl. Instrum. Methods A, 617, p. 120
  • Abdallah, J., The Laser calibration of the ATLAS Tile Calorimeter during the LHC run 1 (2016) JINST, 11. , https://doi.org/10.1088/1748-0221/11/10/T10005, [physics.ins-det]
  • Gupta, A., Nath, N., Gain stability in high-current photomultipliers at high variable counting rates (1967) Nucl. Instrum. Methods, 53, p. 352
  • Hillert, M., The time dependence of the sensitivity of photomultiplier tubes (1951) Br. J. Appl. Phys., 2, p. 164
  • Weitkamp, C., Slaughter, G., Michaelis, W., Schmidt, H., Count-rate dependence of the gain of RCA 7046 photomultipliers for fixed dynode potentials (1968) Nucl. Instrum. Methods, 61, p. 122
  • Zorn, C., A pedestrian's guide to radiation damage in plastic scintillators (1993) Rad. Phys. Chem., 41, p. 37
  • (2003) ATLAS High-Level Trigger, Data-Acquisition and Controls: Technical Design Report, , https://cds.cern.ch/record/616089, Accessed 3 July 2003
  • Barriuso Poy, A., The detector control system of the ATLAS experiment (2008) JINST, 3. , https://doi.org/10.1088/1748-0221/3/05/P05006
  • Ilchenko, Y., Data Quality Monitoring Display for ATLAS experiment at the LHC (2010) J. Phys. Conf. Ser., 219, p. 022035
  • (2005), https://cdsweb.cern.ch/record/837738, ATLAS Computing: Technical Design Report, Accessed 20 June 2005; Golling, T., Hayward, H.S., Onyisi, P.U.E., Stelzer, H.J., Waller, P., The ATLAS data quality defect database system (2012) Eur. Phys. J. C, 72, p. 1960
  • Drake, G., Design of a new switching power supply for the ATLAS TileCAL front-end electronics (2013) JINST, 8, p. C02032
  • Jet energy measurement and its systematic uncertainty in proton–proton collisions at √s = 7 TeV with the ATLAS detector (2015) Eur. Phys. J. C, 75, p. 17. , https://doi.org/10.1140/epjc/s10052-014-3190-y
  • Data-driven determination of the energy scale and resolution of jets reconstructed in the ATLAS calorimeters using dijet and multijet events at √s = 8 TeV (2015) ATLAS-CONF-2015-017, , http://cds.cern.ch/record/2008678, Accessed 13 Apr 2015
  • Performance of algorithms that reconstruct missing transverse momentum in √s = 8 TeV proton-proton collisions in the ATLAS detector (2017) Eur. Phys. J, C77, p. 241. , https://doi.org/10.1140/epjc/s10052-017-4780-2, [hep-ex]
  • Patrignani, C., (2016) Review of Particle Physics. Chin. Phys., C40. , https://doi.org/10.1088/1674-1137/40/10/100001, http://pdg.lbl.gov
  • Lund, E., Bugge, L., Gavrilenko, I., Strandlie, A., Track parameter propagation through the application of a new adaptive Runge-Kutta-Nystrom method in the ATLAS experiment (2009) JINST, 4, p. P04001
  • Dar, A., Atmospheric neutrinos, astrophysical neutrons, and proton-decay experiments (1983) Phys. Rev. Lett., 51, p. 227
  • (2011) Calibration of the ATLAS hadronic barrel calorimeter TileCal using 2008, 2009 and 2010 cosmic rays data, , http://cds.cern.ch/record/1385902/, ATL-TILECAL-PUB-2011-001, Accessed 28 Sept 2011
  • Gleisberg, T., SHERPA 1. α, a proof-of-concept version (2004) JHEP, (2), p. 056. , https://doi.org/10.1088/1126-6708/2004/02/056
  • A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector (2017) Eur. Phys. J. C, 77, p. 26. , https://doi.org/10.1140/epjc/s10052-016-4580-0, [hep-ex]
  • Cacciari, M., Salam, G.P., Soyez, G., The anti- k t jet clustering algorithm (2008) JHEP, 4, p. 063. , [hep-ph]
  • Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data (2016) Eur. Phys. J. C, 76, p. 666. , https://doi.org/10.1140/epjc/s10052-016-4507-9
  • Bahr, M., Herwig++ physics and manual (2008) Eur. Phys. J. C, 58, p. 639. , [hep-ph]
  • Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton-proton collision data (2014) Eur. Phys. J. C, 74, p. 3130. , https://doi.org/10.1140/epjc/s10052-014-3130-x, [hep-ex]
  • (2016) ATLAS Computing Acknowledgements, , https://cds.cern.ch/record/2202407, ATL-GEN-PUB-2016-002, Accessed 28 July 2016

Citas:

---------- APA ----------
(2018) . Operation and performance of the ATLAS Tile Calorimeter in Run 1. European Physical Journal C, 78(12).
http://dx.doi.org/10.1140/epjc/s10052-018-6374-z
---------- CHICAGO ----------
Aaboud, M. "Operation and performance of the ATLAS Tile Calorimeter in Run 1" . European Physical Journal C 78, no. 12 (2018).
http://dx.doi.org/10.1140/epjc/s10052-018-6374-z
---------- MLA ----------
Aaboud, M. "Operation and performance of the ATLAS Tile Calorimeter in Run 1" . European Physical Journal C, vol. 78, no. 12, 2018.
http://dx.doi.org/10.1140/epjc/s10052-018-6374-z
---------- VANCOUVER ----------
Aaboud, M. Operation and performance of the ATLAS Tile Calorimeter in Run 1. Eur. Phys. J. C. 2018;78(12).
http://dx.doi.org/10.1140/epjc/s10052-018-6374-z