Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In recent years, some studies have drawn attention to the lack of large-angle correlations in the observed cosmic microwave background (CMB) temperature anisotropies with respect to that predicted within the standard Λ CDM model. Lately, it has been argued that such a lack of correlations could be explained in the framework of the so-called Rh= ct model without inflation. The aim of this work is to study whether there is a mechanism to generate, through a quantum field theory, the primordial power spectrum presented by these authors. Specifically, we consider two different scenarios: first, we assume a scalar field dominating the early Universe in the Rh= ct cosmological model, and second, we deal with the possibility of adding an early inflationary phase to the mentioned model. During the analysis of the consistency between the predicted and observed amplitudes of the CMB temperature anisotropies in both scenarios, we run into deep issues which indicate that it is not clear how to characterize the primordial quantum perturbations within the Rh= ct model. © 2016, The Author(s).

Registro:

Documento: Artículo
Título:Puzzling initial conditions in the Rh= ct model
Autor:Bengochea, G.R.; León, G.
Filiación:Instituto de Astronomía y Física del Espacio (IAFE), CONICET-Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, PabI, Buenos Aires, 1428, Argentina
Año:2016
Volumen:76
Número:11
DOI: http://dx.doi.org/10.1140/epjc/s10052-016-4485-y
Título revista:European Physical Journal C
Título revista abreviado:Eur. Phys. J. C
ISSN:14346044
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14346044_v76_n11_p_Bengochea

Referencias:

  • Hinshaw, G., (2013) Astrophys. J. Suppl., 208, p. 19
  • Ade, P.A.R., (2014) Astron. Astrophys., 571, p. A15
  • Ade, P.A.R., (2014) Astron. Astrophys., 571, p. A22
  • Ade, P.A.R., (2015) Phys. Rev. Lett., 114, p. 101301
  • Ade, P.A.R., Planck 2015 results (XIII (2015) Cosmological parameters
  • Ade, P.A.R., Planck 2015 results (XX (2015) Constraints on inflation
  • Hinshaw, G., Banday, A.J., Bennett, C.L., Gorski, K.M., Kogut, A., Lineweaver, C.H., Smoot, G.F., Wright, E.L., (1996) Astrophys. J., 464, p. L25
  • Spergel, D.N., (2003) Astrophys. J. Suppl., 148, p. 175
  • Ade, P.A.R., Planck 2015 results (XVI (2015) Isotropy and statistics of the CMB
  • Copi, C., Huterer, D., Schwarz, D., Starkman, G., (2007) Phys. Rev. D, 75, p. 023507
  • Copi, C.J., Huterer, D., Schwarz, D.J., Starkman, G.D., (2009) Mon. Notices R. Astron. Soc., 399, p. 295
  • Copi, C.J., Huterer, D., Schwarz, D.J., Starkman, G.D., (2010) Adv. Astron., 2010, p. 847541
  • Sarkar, D., Huterer, D., Copi, C.J., Starkman, G.D., Schwarz, D.J., (2011) Astropart. Phys., 34, p. 591
  • Copi, C.J., Huterer, D., Schwarz, D.J., Starkman, G.D., (2015) Mon. Notices R. Astron. Soc., 451 (3), p. 2978
  • Efstathiou, G., Ma, Y.Z., Hanson, D., (2010) Mon. Notices R. Astron. Soc., 407, p. 2530
  • Schwarz, D.J., Copi, C.J., (2015) CMB Anomalies after Planck, , Huterer: G.D. Starkman
  • Melia, F., (2007) Mon. Notices R. Astron. Soc., 382, p. 1917
  • Melia, F., (2009) Int. J. Mod. Phys. D, 18, p. 1113
  • Melia, F., Abdelqader, M., (2009) Int. J. Mod. Phys. D, 18, p. 1889
  • Melia, F., Shevchuk, A., (2012) Mon. Notices R. Astron. Soc., 419, p. 2579
  • Melia, F., Maier, R.S., (2013) Mon. Notices R. Astron. Soc., 432, p. 2669
  • Wei, J.J., Wu, X.F., Melia, F., (2013) Astrophys. J., 772, p. 43
  • Wei, J.J., Wu, X.F., Melia, F., Wei, D.M., Feng, L.L., (2014) Mon. Notices R. Astron. Soc., 439 (4), p. 3329
  • Wei, J.J., Wu, X.F., Melia, F., (2014) Astrophys. J., 788, p. 190
  • Wei, J.J., Wu, X.F., Melia, F., (2015) Mon. Notices R. Astron. Soc., 447 (1), p. 479
  • Melia, F., Wei, J.J., Wu, X.F., (2015) Astron. J., 149, p. 2
  • Wei, J.J., Wu, X.F., Melia, F., Maier, R.S., (2015) Astron. J., 149, p. 102
  • Melia, F., (2013) Astron. Astrophys., 553, p. A76
  • Weyl, H., (2009) Gen. Relativ. Gravit., 41 (7), p. 1661
  • Melia, F., (2015) Astrophys. Space Sci., 356 (2), p. 393
  • van Oirschot, P., Kwan, J., Lewis, G.F., (2010) Mon. Notices R. Astron. Soc., 404, p. 1633
  • Lewis, G.F., van Oirschot, P., (2012) Mon. Notices R. Astron. Soc., 423, p. L26
  • Mitra, A., (2014) Mon. Notices R. Astron. Soc., 442 (1), p. 382
  • Bilicki, M., Seikel, M., (2012) Mon. Notices R. Astron. Soc., 425, p. 1664
  • Shafer, D.L., (2015) Phys. Rev. D, 91 (10), p. 103516
  • P. van Oirschot, J. Kwan, G.F. Lewis, in Proceedings, 13th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG13): Stockholm, Sweden, July 1–7, 2012 (2015), pp. 1567–1569; Lewis, G.F., (2013) Mon. Notices R. Astron. Soc., 432, p. 2324
  • Lewis, G.F., Barnes, L.A., Kaushik, R., (2016) Mon. Notices R. Astron. Soc., 460 (1), p. 291
  • Kim, D.Y., Lasenby, A.N., (2016) M.P, , Hobson: Friedmann–Robertson–Walker models do not require zero active mass
  • Melia, F., (2014) Astron. Astrophys., 561, p. A80
  • Bikwa, O., Melia, F., Shevchuk, A., (2012) Mon. Notices R. Astron. Soc., 421, p. 3356
  • Melia, F., (2012) JCAP, 1209, p. 029
  • Melia, F., (2015) Mon. Notices R. Astron. Soc., 446, p. 1191
  • Melia, F., (2016) Front. Phys. (Beijing), 11, p. 119801
  • F. Melia. The zero active mass condition in Friedmann–Robertson–Walker cosmologies (2016); arXiv:1604.06365, D.Y. Kim, A.N. Lasenby, M.P. Hobson. Spherically-symmetric solutions in general relativity (2016). [gr-qc]; Melia, F., (2015) Astron. J., 149, p. 6
  • Mukhanov, V., (2005) Physical Foundations of Cosmology, , Cambridge University Press, New York
  • Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H., (1992) Phys. Rep., 215, p. 203
  • Martin, J., Schwarz, D.J., (1998) Phys. Rev. D, 57, p. 3302
  • Bardeen, J.M., (1980) Phys. Rev. D, 22, p. 1882
  • Bose, S.K., (2009) J. Phys. Conf. Ser., 196, p. 012022
  • Barci, D.G., Bollini, C.G., Rocca, M., (1993) Nuovo Cim. A, 106, p. 603
  • Tanaka, S., (1960) Prog. Theor. Phys., 24, p. 171
  • Feinberg, G., (1967) Phys. Rev., 159, p. 1089
  • Arons, M.E., Sudarshan, E.C.G., (1968) Phys. Rev., 173, p. 1622
  • Dhar, J., Sudarshan, E.C.G., (1968) Phys. Rev., 174, p. 1808
  • Kamoi, K., Kamefuchi, S., (1971) Prog. Theor. Phys., 45, p. 1646
  • Bilaniuk, O.M.P., Deshpande, V.K., Sudarshan, E.C.G., (1962) Am. J. Phys., 30, p. 718

Citas:

---------- APA ----------
Bengochea, G.R. & León, G. (2016) . Puzzling initial conditions in the Rh= ct model. European Physical Journal C, 76(11).
http://dx.doi.org/10.1140/epjc/s10052-016-4485-y
---------- CHICAGO ----------
Bengochea, G.R., León, G. "Puzzling initial conditions in the Rh= ct model" . European Physical Journal C 76, no. 11 (2016).
http://dx.doi.org/10.1140/epjc/s10052-016-4485-y
---------- MLA ----------
Bengochea, G.R., León, G. "Puzzling initial conditions in the Rh= ct model" . European Physical Journal C, vol. 76, no. 11, 2016.
http://dx.doi.org/10.1140/epjc/s10052-016-4485-y
---------- VANCOUVER ----------
Bengochea, G.R., León, G. Puzzling initial conditions in the Rh= ct model. Eur. Phys. J. C. 2016;76(11).
http://dx.doi.org/10.1140/epjc/s10052-016-4485-y