Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In Split-SUSY with BRpV we show that the Gravitino DM solution is consistent with experimental evidence as regards its relic density and life time. We arrive at this conclusion by performing a complete numerical and algebraic study of the parameter space, including constraints from the recently determined Higgs mass, updated neutrino physics, and BBN constraints on NLSP decays. The Higgs mass requires a relatively low Split-SUSY mass scale, which is naturally smaller than usual values for reheating temperature, allowing the use of the standard expression for the relic density. We include restrictions from neutrino physics with three generations, and we notice that the gravitino decay width depends on the atmospheric neutrino mass scale. We calculate the neutralino decay rate and find it consistent with BBN. We mention some implications on indirect DM searches. © 2014, The Author(s).

Registro:

Documento: Artículo
Título:Gravitino dark matter in split supersymmetry with bilinear R-parity violation
Autor:Cottin, G.; Díaz, M.A.; Guzmán, M.J.; Panes, B.
Filiación:Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave, Cambridge, CB3 0HE, United Kingdom
Instituto de Física, Universidad Católica de Chile, Av. Vicuña Mackenna, Santiago, 4860, Chile
Instituto de Astronomía y Física del Espacio, C.C. 67, Suc. 28, Buenos Aires, 1428, Argentina
Instituto de Física, Universidade de São Paulo, R. do Matão 187, São Paulo, SP 05508-900, Brazil
Año:2014
Volumen:74
Número:11
Página de inicio:1
Página de fin:17
DOI: http://dx.doi.org/10.1140/epjc/s10052-014-3138-2
Título revista:European Physical Journal C
Título revista abreviado:Eur. Phys. J. C
ISSN:14346044
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14346044_v74_n11_p1_Cottin

Referencias:

  • ATLAS-CONF-2013-047, , CERN, Geneva:
  • arXiv:1402.4770, CMS Collaboration, S. Chatrchyan et al., Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at (Formula presented.) = 8 TeV. [hep-ex]; ATLAS-CONF-2013-091, , CERN, Geneva:
  • arXiv:1306.6643, C.M.S. Collaboration, S. Chatrchyan et al., Search for top squarks in R-parity-violating supersymmetry using three or more leptons and b-tagged jets. Phys. Rev. Lett. 111, 221801 (2013). [hep-ex]; arXiv:1310.6584, ATLAS Collaboration, G. Aad et al., Search for long-lived stopped R-hadrons decaying out-of-time with pp collisions using the ATLAS detector., Phys. Rev. D 88, 112003 (2013). [hep-ex]; arXiv:1205.0272, CMS Collaboration, S. Chatrchyan et al., Search for heavy long-lived charged particles in (Formula presented.) collisions at (Formula presented.) TeV. Phys. Lett. B 713, 408–433 (2012). [hep-ex]; arXiv:1407.7963, B. Fuks, M. Klasen, D. Lamprea, M. Rothering, Precision predictions for direct gaugino and slepton production at the LHC. [hep-ph]; arXiv:1310.2825, J. Heisig, J. Kersten, B. Panes, T. Robens, A survey for low stau yields in the MSSM. JHEP 1404, 053 (2014). [hep-ph]; arXiv:1403.5294, ATLAS Collaboration, G. Aad et al., Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at (Formula presented.) = 8 TeV with the ATLAS detector. [hep-ex]; ATLAS-CONF-2013-028, , CERN, Geneva:
  • arXiv:1402.7029, ATLAS Collaboration, G. Aad et al., Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in (Formula presented.) 8TeV (Formula presented.) collisions with the ATLAS detector. JHEP 1404, 169 (2014). [hep-ex]; Search for chargino and neutralino production in final states with one lepton, two b-jets consistent with a Higgs boson, and missing transverse momentum with the ATLAS detector in 20.3 fb$$^{-1}$$-1 of $$\\sqrt{s}$$s = 8 TeV $$pp$$pp collisions. ATLAS-CONF-2013-093, , CERN, Geneva:
  • (2013) CMS-PAS-SUS-13-006, , CERN, Geneva:
  • (2013) CMS-PAS-SUS-13-017, , CERN, Geneva:
  • arXiv:1210.4457, ATLAS Collaboration, G. Aad et al., Search for R-parity-violating supersymmetry in events with four or more leptons in (Formula presented.) TeV (Formula presented.) collisions with the ATLAS detector. JHEP 1212, 124 (2012). [hep-ex]; arXiv:1204.5341, CMS Collaboration, S. Chatrchyan et al., Search for anomalous production of multilepton events in (Formula presented.) collisions at (Formula presented.) TeV. JHEP 1206 169 (2012). [hep-ex]; arXiv:hep-th/0405159, N. Arkani-Hamed, S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC. JHEP 0506, 073 (2005). [hep-th]; arXiv:hep-ph/0406088, G. Giudice, A. Romanino, Split supersymmetry, Nucl. Phys. B 699, 65–89 (2004). [hep-ph]; arXiv:1312.1802, S. Jung, J.D. Wells, Gaugino physics of split supersymmetry spectrum at the LHC and future proton colliders. Phys. Rev. D 89, 075004 (2014). [hep-ph]; arXiv:1108.3390, D.S. Alves, E. Izaguirre, J.G. Wacker, Higgs, Binos and Gluinos: Split Susy Within Reach. [hep-ph]; arXiv:hep-ph/0612273, F. Wang, W. Wang, F.-Q. Xu, J. M. Yang, H. Zhang, Virtual effects of split SUSY in Higgs productions at linear colliders. Eur. Phys. J. C 51, 713–719 (2007). [hep-ph]; arXiv:hep-ph/0408088, W. Kilian, T. Plehn, P. Richardson, E. Schmidt, Split supersymmetry at colliders, Eur. Phys. J. C 39, 229–243 (2005). [hep-ph]; arXiv:hep-ph/0408296, S.K. Gupta, P. Konar, B. Mukhopadhyaya, R-parity violation in split supersymmetry and neutralino dark matter: to be or not to be, Phys. Lett. B 606, 384–390 (2005). [hep-ph]; arXiv:hep-ph/0506214, P. Gambino, G. Giudice, P. Slavich, Gluino decays in split supersymmetry, Nucl. Phys. B 726, 35–52 (2005). [hep-ph]; arXiv:hep-ph/0408335, K. Cheung, W.-Y. Keung, Split supersymmetry, stable gluino, and gluinonium. Phys. Rev. D 71, 015015 (2005). [hep-ph]; arXiv:hep-ph/0408248, J.L. Hewett, B. Lillie, M. Masip, T.G. Rizzo, Signatures of long-lived gluinos in split supersymmetry. JHEP 0409, 070 (2004). [hep-ph]; arXiv:1207.7214, ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1–29 (2012). [hep-ex]; arXiv:1303.4571, CMS Collaboration, S. Chatrchyan et al., Observation of a new boson with mass near 125 GeV in pp collisions at (Formula presented.) = 7 and 8 TeV, JHEP 1306, 081 (2013). [hep-ex]; arXiv:1211.1000, G. Cottin, M.A. Diaz, S. Olivares, N. Rojas, Neutrinos and the Higgs Boson in split supersymmetry. [hep-ph]; arXiv:1108.6077, G.F. Giudice, A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements. Nucl. Phys. B 858, 63–83 (2012). [hep-ph]; arXiv:1212.6971, N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner, T. Zorawski, Simply unnatural supersymmetry. [hep-ph]; arXiv:1210.0555, A. Arvanitaki, N. Craig, S. Dimopoulos, G. Villadoro, Mini-Split. JHEP 1302, 126 (2013). [hep-ph]; arXiv:0902.1720, M.A. Diaz, B. Koch, B. Panes, Gravity effects on neutrino masses in split supersymmetry. Phys. Rev. D 79, 113009 (2009). [hep-ph]; arXiv:1405.7540, D. Forero, M. Tortola, J. Valle, Neutrino oscillations refitted. [hep-ph]; arXiv:astro-ph/0408426, M. Kawasaki, K. Kohri, T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles. Phys. Rev. D 71, 083502 (2005). [astro-ph]; arXiv:hep-ph/0604251, K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles. Phys. Rev. D 74, 103509 (2006). [hep-ph]; arXiv:0804.3745, M. Kawasaki, K. Kohri, T. Moroi, A. Yotsuyanagi, Big-Bang nucleosynthesis and gravitino. Phys. Rev. D 78, 065011 (2008). [hep-ph]; arXiv:0908.3399, L. Covi, J. Hasenkamp, S. Pokorski, J. Roberts, Gravitino dark matter and general neutralino NLSP. JHEP 0911, 003 (2009). [hep-ph]; arXiv:hep-ph/0701104, V.S. Rychkov, A. Strumia, Thermal production of gravitinos. Phys. Rev. D 75, 075011 (2007). [hep-ph]; arXiv:0708.2786, J. Pradler, Electroweak contributions to thermal gravitino production. [hep-ph]; arXiv:1303.5076, Planck Collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters. [astro-ph.CO]; arXiv:1111.6779, M. Grefe, Unstable gravitino dark matter—prospects for indirect and direct detection. [hep-ph]; arXiv:1007.1728v2, K.-Y. Choi, D. Restrepo, C.E. Yaguna, O. Zapata, Indirect detection of gravitino dark matter including its three-body decays. JCAP 1010, 033 (2010). [hep-ph]; Khlopov, M.Y., Linde, A.D., Is it easy to save the gravitino? (1984) Phys. Lett. B, 138, pp. 265-268
  • Falomkin, I., Pontecorvo, G., Sapozhnikov, M., Khlopov, M.Y., Balestra, F., Low-energy anti-P HE-4 annihilation and problems of the modern cosmology, gut and susy models (1984) Nuovo Cim., A79, pp. 193-204
  • arXiv:astro-ph/0406621, M.Y. Khlopov, A. Barrau, J. Grain, Gravitino production by primordial black hole evaporation and constraints on the inhomogeneity of the early universe. Class. Quant. Grav. 23, 1875–1882 (2006). [astro-ph]; arXiv:0705.1496, N. Bernal, A. Djouadi, P. Slavich, The MSSM with heavy scalars. JHEP 0707, 016 (2007). [hep-ph]; arXiv:1311.0720, A. Djouadi, Implications of the Higgs discovery for the MSSM. [hep-ph]; arXiv:hep-ph/0004115, M. Hirsch, M. Diaz, W. Porod, J. Romao, J. Valle, Neutrino masses and mixings from supersymmetry with bilinear R parity violation: a theory for solar and atmospheric neutrino oscillations. Phys. Rev. D 62, 113008 (2000). [hep-ph]; arXiv:hep-ph/0605285, M.A. Diaz, P. Fileviez Perez, C. Mora, Neutrino masses in split supersymmetry. Phys. Rev. D 79, 013005 (2009). [hep-ph]; arXiv:1103.6193, J. Hasenkamp, J. Kersten, Dark and visible matter with broken R-parity and the axion multiplet. Phys. Lett. B 701, 660–666 (2011). [hep-ph]; arXiv:1310.7437, F. Cadiz, M.A. Diaz, RGE Effects on neutrino masses in partial split supersymmetry. [hep-ph]; Hayashi, M.J., Murayama, A., Radiative breaking of SU(2)-r X U(1)-(B-L) gauge symmetry induced by broken $$N=1$$N=1 supergravity in a left-right symmetric model (1985) Phys. Lett. B, 153, p. 251
  • Masiero, A., Valle, J., A model for spontaneous R parity breaking (1990) Phys. Lett. B, 251, pp. 273-278
  • Romao, J., Santos, C., Valle, J., How to spontaneously break R-parity (1992) Phys. Lett. B, 288, pp. 311-320
  • Romao, J., Valle, J., Neutrino masses in supersymmetry with spontaneously broken R parity (1992) Nucl. Phys. B, 381, pp. 87-108
  • arXiv:hep-ph/9911327, R. Kitano, K.-Y. Oda, Neutrino masses in the supersymmetric standard model with right-handed neutrinos and spontaneous R-parity violation. Phys. Rev. D 61, 113001 (2000). [hep-ph]; arXiv:0903.1512, A. Vicente, Spontaneous R-parity violation and the origin of neutrino mass. J. Phys. Conf. Ser. 171, 012073 (2009). [hep-ph]; arXiv:1010.4023, V. Barger, P. Fileviez Perez, S. Spinner, Three layers of neutrinos, Phys. Lett. B 696, 509–512 (2011). [hep-ph]; arXiv:1401.7989, Z. Marshall, B.A. Ovrut, A. Purves, S. Spinner, Spontaneous (Formula presented.)-parity Bbreaking, stop LSP decays and the neutrino mass hierarchy. Phys. Lett. B 732, 325–329 (2014). [hep-ph]; arXiv:hep-ph/0305233, F. Vissani, M. Narayan, V. Berezinsky, U(e3) from physics above the GUT scale, Phys. Lett. B 571, 209–216 (2003). [hep-ph]; arXiv:1112.6351, G. Cottin, M.A. Diaz, B. Koch, Non-diagonal charged Lepton Yukawa matrix: effects on neutrino mixing in supersymmetry. Phys. Rev. D 85, 095019 (2012). [hep-ph]; ATLAS-CONF-2013-092, , CERN, Geneva:
  • (2014) that include dileptons, CMS-PAS-EXO-12-037, , CERN, Geneva:
  • Fayet, P., Experimental consequences of supersymmetry, in Proceedings of the 16th Rencontre de Moriond, vol. 1, ed. by J. Tran Thanh Van (Editions Frontieres Paris, 1981, pp. 347-367
  • arXiv:hep-ph/9911302, G. Giudice, A. Riotto, I. Tkachev, Thermal and nonthermal production of gravitinos in the early universe. JHEP 9911, 036 (1999). [hep-ph]; arXiv:hep-ph/0012052, M. Bolz, A. Brandenburg, W. Buchmuller, Thermal production of gravitinos, Nucl. Phys. B 606, 518–544 (2001). [hep-ph]; arXiv:hep-ph/0608344, J. Pradler, F.D. Steffen, Thermal gravitino production and collider tests of leptogenesis. Phys. Rev. D 75, 023509 (2007). [hep-ph]; arXiv:1310.6352, J. Heisig, Gravitino LSP and leptogenesis after the first LHC results. JCAP 1404, 023 (2014). [hep-ph]; arXiv:hep-ph/0005214, F. Takayama, M. Yamaguchi, Gravitino dark matter without R-parity, Phys. Lett. B 485, 388–392 (2000). [hep-ph]; arXiv:hep-ph/0702184, W. Buchmuller, L. Covi, K. Hamaguchi, A. Ibarra, T. Yanagida, Gravitino dark matter in R-parity breaking vacua. JHEP 0703, 037 (2007). [HEP-PH]; arXiv:1106.0308, M.A. Diaz, S.G. Saenz, B. Koch, Gravitino dark matter and neutrino masses in partial split supersymmetry. Phys. Rev. D 84, 055007 (2011). [hep-ph]; arXiv:1109.0512, D. Restrepo, M. Taoso, J. Valle, O. Zapata, Gravitino dark matter and neutrino masses with bilinear R-parity violation. Phys. Rev. D 85, 023523 (2012). [hep-ph]; Kolb, E.W., Turner, M.S., The Early universe (1990) Front. Phys., 69, pp. 1-547
  • Weinberg, S., Cosmology. Cosmology (OUP (2008) Oxford, , http://books.google.com.br/books?id=nqQZdg020fsC
  • Guth, A.H., Inflationary universe: a possible solution to the horizon and flatness problems, Phys (1981) Rev. D, 23, p. 347
  • Linde, A.D., A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems (1982) Phys. Lett. B, 108, pp. 389-393
  • Albrecht, A., Steinhardt, P.J., Cosmology for grand unified theories with radiatively induced symmetry breaking (1982) Phys. Rev. Lett, 48, pp. 1220-1223
  • arXiv:hep-th/9907124, R. Kallosh, L. Kofman, A.D. Linde, A. Van Proeyen, Gravitino production after inflation. Phys. Rev. D 61, 103503 (2000). [hep-th]; arXiv:hep-ph/0604132, T. Asaka, S. Nakamura, M. Yamaguchi, Gravitinos from heavy scalar decay. Phys. Rev. D 74, 023520 (2006). [hep-ph]; arXiv:1209.2583, K. Nakayama, F. Takahashi, T.T. Yanagida, Eluding the gravitino overproduction in inflaton decay. Phys. Lett. B 718, 526–531 (2012). [hep-ph]; arXiv:0907.0530, F. Staub, W. Porod, J. Niemeyer, Strong dark matter constraints on GMSB models. JHEP 1001, 058 (2010). [hep-ph]; Fukugita, M., Yanagida, T., Baryogenesis without grand unification (1986) Phys. Lett. B, 174, p. 45
  • arXiv:hep-ph/0401240, W. Buchmuller, P. Di Bari, M. Plumacher, Leptogenesis for pedestrians. Annals Phys. 315, 305–351 (2005). [hep-ph]; arXiv:1403.3985, BICEP2 Collaboration, P. Ade et al., BICEP2 I: Detection Of B-mode polarization at degree angular scales. [astro-ph.CO]; arXiv:hep-ph/0107286, G. Moreau, M. Chemtob, R-parity violation and the cosmological gravitino problem. Phys. Rev. D 65, 024033 (2002). [hep-ph]; arXiv:1406.3430, A. Albert, G.A. Gomez-Vargas, M. Grefe, C. Munoz, C. Weniger, et al., Search for 100 MeV to 10 GeV gamma-ray lines in the Fermi-LAT data and implications for gravitino dark matter in the(Formula presented.)SSM. [astro-ph.HE]; arXiv:1111.6041, M. Grefe, Neutrino signals from gravitino dark matter with broken R-parity. [hep-ph]

Citas:

---------- APA ----------
Cottin, G., Díaz, M.A., Guzmán, M.J. & Panes, B. (2014) . Gravitino dark matter in split supersymmetry with bilinear R-parity violation. European Physical Journal C, 74(11), 1-17.
http://dx.doi.org/10.1140/epjc/s10052-014-3138-2
---------- CHICAGO ----------
Cottin, G., Díaz, M.A., Guzmán, M.J., Panes, B. "Gravitino dark matter in split supersymmetry with bilinear R-parity violation" . European Physical Journal C 74, no. 11 (2014) : 1-17.
http://dx.doi.org/10.1140/epjc/s10052-014-3138-2
---------- MLA ----------
Cottin, G., Díaz, M.A., Guzmán, M.J., Panes, B. "Gravitino dark matter in split supersymmetry with bilinear R-parity violation" . European Physical Journal C, vol. 74, no. 11, 2014, pp. 1-17.
http://dx.doi.org/10.1140/epjc/s10052-014-3138-2
---------- VANCOUVER ----------
Cottin, G., Díaz, M.A., Guzmán, M.J., Panes, B. Gravitino dark matter in split supersymmetry with bilinear R-parity violation. Eur. Phys. J. C. 2014;74(11):1-17.
http://dx.doi.org/10.1140/epjc/s10052-014-3138-2