Artículo

Ramos, L.C.B.; Marchesi, M.S.P.; Callejon, D.; Baruffi, M.D.; Lunardi, C.N.; Slep, L.D.; Bendhack, L.M.; da Silva, R.S. "Enhanced Antitumor Activity against Melanoma Cancer Cells by Nitric Oxide Release and Photosensitized Generation of Singlet Oxygen from Ruthenium Complexes" (2016) European Journal of Inorganic Chemistry. 2016(22):3592-3597
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We have investigated the synergistic effect of nitric oxide and singlet oxygen originating from stimulated ruthenium complexes and their photodynamic action against a melanoma cancer cell line. In aqueous solution, the photosensitizer [Ru(NH3)5pz]2+(I; pz = pyrazine) and the nitrosylruthenium complex trans-[RuCl([15]aneN4)NO]2+(II; [15]aneN4= 1,4,8,12-tetrazacyclopentadecane) can produce singlet oxygen and nitric oxide, respectively. The phototoxicity of complex I does not correlate with the singlet oxygen quantum yields unless it is mediated by nitric oxide release from complex II. This effect is around 70 and 50 % higher than the effect prompted by compounds I and II, respectively, in isolation in the presence of light. It was found that the number of hypodiploid cells in the melanoma cancer cells increased, which indicates that a mixture of compounds I and II induces apoptosis of tumorigenic cell lines. Both singlet oxygen and nitric oxide produced by the ruthenium complexes enhance the photodynamic efficacy in melanoma cancer cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Registro:

Documento: Artículo
Título:Enhanced Antitumor Activity against Melanoma Cancer Cells by Nitric Oxide Release and Photosensitized Generation of Singlet Oxygen from Ruthenium Complexes
Autor:Ramos, L.C.B.; Marchesi, M.S.P.; Callejon, D.; Baruffi, M.D.; Lunardi, C.N.; Slep, L.D.; Bendhack, L.M.; da Silva, R.S.
Filiación:Faculdade de Ciências Farmacêuticas de Ribeirão Preto – USP, Av. do Café s/n, Ribeirão Preto-SP, 14040-903, Brazil
Faculdade de Ceilandia, Universidade de Brasília, Brasilia-DF, Brazil
Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
Palabras clave:Antitumor agents; Nitrogen oxides; Ruthenium; Singlet oxygen; Toxicity
Año:2016
Volumen:2016
Número:22
Página de inicio:3592
Página de fin:3597
DOI: http://dx.doi.org/10.1002/ejic.201600217
Título revista:European Journal of Inorganic Chemistry
Título revista abreviado:Eur. J. Inorg. Chem.
ISSN:14341948
CODEN:EJICF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14341948_v2016_n22_p3592_Ramos

Referencias:

  • Ignarro, L., (2000) Nitric Oxide: Biology and Photobiology, , in, 1st ed.,, Academic Press, San Diego, CA
  • Folkes, L.K., O'Neill, P., (2013) Free Radical Biol. Med., 58, pp. 14-25
  • Chinge, E.C., Stratford, I.J., (1997) Essays Biochem., 32, pp. 61-72
  • Brüne, B., (2003) Cell Death Differ., 10, pp. 864-869
  • Huguenin, S., Vacherot, F., Kheuang, L., Fleury-Feith, J., M.-C. Jaurand, M., Bolla, M., Riffaud, J.P., Chopin, D.K., (2004) Mol. Cancer Ther., 3, pp. 291-298
  • Cheng, H., Wang, L., Mollica, M., Re, A.T., Wu, S., Zuo, L., (2014) Cancer Lett., 353, pp. 1-7
  • Celli, J.P., Spring, B.Q., Rizvi, I., Evans, C.L., Samkoe, K.S., Verma, S., Pogue, B.W., Hasan, T., (2010) Chem. Rev., 110, pp. 2795-2838
  • Tfouni, E., Truzzi, D.R., Tavares, A., Gomes, A.J., Figueiredo, L.E., Franco, D.W., (2012) Nitric Oxide, 26, pp. 38-53
  • Merkle, A.C., Fry, N.L., Mascharak, P.K., Lehnert, N., (2011) Inorg. Chem., 50, pp. 12192-12203
  • Carneiro, Z.A., Moraes, J.C.B., Rodrigues, F.P., de Lima, R.G., Curti, C., da Rocha, Z.N., Paulo, M., da Silva, R.S., (2011) J. Inorg. Biochem., 105, pp. 1035-1043
  • de Carvalho, N.A., Fornari, E.C., Gomes, W.R., Araujo, D.M.S., Machado, A.E.H., Nikolaou, S., (2011) Inorg. Chim. Acta, 370, pp. 444-448
  • Ghosh, K., Kumar, S., Kumar, R., (2011) Inorg. Chem. Commun., 14, pp. 146-149
  • Ostrowski, A.D., Ford, P.C., (2009) Dalton Trans., 48, pp. 10660-10669
  • Rose, M.J., Mascharak, P.K., (2008) Coord. Chem. Rev., 252, pp. 2093-2114
  • Prakash, R., Czaja, A., Heinemann, F.W., Sellmann, D., (2005) J. Am. Chem. Soc., 127, pp. 13758-13759
  • De, P., Sarkar, B., Maji, S., Das, A.K., Bulak, E., Shaikh, M.M., Kaim, W., Lahiri, G.K., (2009) Eur. J. Inorg. Chem., 18, pp. 2702-2710
  • Hoffman-Luca, C.G., Eroy-Reveles, A.A., Alvarenga, J., Mascharak, P.K., (2009) Inorg. Chem., 48, pp. 9104-9111
  • Fry, N.L., Mascharak, P.K., (2011) Acc. Chem. Res., 44, pp. 289-298
  • Merkle, A.C., McQuarters, A.B., Lehnert, N., (2012) Dalton Trans., 41, pp. 8047-8059
  • da Silva, R.S., Marchesi, M.S.P., Tedesco, A.C., Mikhailovsky, A., Ford, P.C., (2007) Photochem. Photobiol. Sci., 6, pp. 515-518
  • da Silva, R.S., Marchesi, M.S.P., Khin, C., Lunardi, C.N., Bendhack, L.M., Ford, P.C., (2007) J. Phys. Chem. B, 111, pp. 6962-6968
  • Marchesi, M.S.P., Cicillini, S.A., Prazias, A.C.L., Bendhack, L.M., Batista, A.A., da Silva, R.S., (2012) Transition Met. Chem., 37, pp. 475-479
  • Xie, K., Wang, Y., Huang, S., Xu, L., Bielenberg, D., Salas, T., McConkey, D.J., Fidler, I.J., (1997) Oncogene, 15, pp. 771-779
  • Kim, M.Y., (2012) Mol. Med. Rep., 5, pp. 585-591
  • Agnez-Lima, L.F., Melo, J.T.A., Silva, A.E., Oliveira, A.H.S., Timoteo, A.R.S., Lima-Bessa, K.M., Martinez, G.R., Menck, C.F.M., (2012) Mutat. Res., 751, pp. 15-28
  • Mattson, M.P., Chan, S.L., (2003) Nat. Cell Biol., 5, pp. 1041-1043
  • Nakamura, K., Bossy-Wetzel, E., Burns, K., Fadel, M.P., Lozyk, M., Goping, I.S., Opas, M., Michalak, M., (2000) J. Cell Biol., 150, pp. 731-740
  • Nava, B., Julia, K., Ilana, K., Hilla, O., Assaf, R., (2009) Physiol. Rev., 89, pp. 27-71
  • Nicotera, P., Orrenius, S., (1998) Cell Calcium, 23, pp. 173-180
  • Distelhorst, C.W., Shore, G.C., (2004) Oncogene, 23, pp. 2875-2880
  • Vaca, L., Kunze, D.L., (1995) Am. J. Physiol. Cell Physiol., 269, pp. C733-C738
  • Kaznacheyeva, E., Zubov, A., Gusev, K., Bez, I., (2001) Proc. Natl. Acad. Sci. USA, pp. 98-148
  • López-Collazo, J., Mateo, E.J., Miras-Portugal, M.T., Boscá, L., (1997) FEBS Lett., 413, pp. 124-128
  • Tajiri, H., Hayakawa, A., Matsumoto, Y., Yokoyama, I., Yoshida, S., (1998) Cancer Lett., 19, pp. 205-214
  • Rück, A., Heckelsmiller, K., Kaufmann, R., Grossman, N., Haseroth, E., Akgün, N., (2000) J. Photochem. Photobiol. A, 72, pp. 210-216
  • Granville, D.J., Ruehlmann, D.O., Choy, J.C., Cassidy, B.A., Hunt, D.W., van Breemen, C., McManus, B.M., (2001) Cell Calcium, 30, pp. 343-350
  • Inanami, O., Yoshito, A., Takahashi, K., Hiraoka, W., Kuwabara, M., (1999) J. Photochem. Photobiol. A, 70, pp. 650-655
  • Grebenova, D., Kuzelova, K., Smetana, K., Pluskalova, M., Cajthamlova, H., Marinov, I., Fuchs, O., Hrkal, Z., (2003) J. Photochem. Photobiol. B, pp. 69-71
  • Jourd′heuil, D., Jourd'heuil, F.L., Kutchukian, P.S., Musah, R.A., Wink, D.A., Grisham, M.B., (2001) J. Biol. Chem., 276, pp. 28799-28805
  • Gupta, S., Ahmad, N., Mukhtar, H., (1998) Cancer Res., 58, pp. 1785-1788
  • Bento, M.L., Tfouni, E., (1988) Inorg. Chem., 27, pp. 3341-3410
  • Nicoletti, I., Migliorati, G., Pagliacci, M.C., Grignani, F., Riccardi, C., (1991) J. Immunol. Methods, 139, pp. 271-279
  • Lunardi, C.N., Cacciari, A.L., da Silva, R.S., Bendhack, L.M., (2006) Nitric Oxide, 15, pp. 252-258
  • Bonaventura, D., Oliveira, F.S., Lunardi, C.N., Vercesi, J.A., da Silva, R.S., Bendhack, L.M., (2006) Nitric Oxide, 15, pp. 387-394
  • Kojima, H., Nakatsubo, N., Kikuchi, K., Urano, Y., Higuchi, T., Tanaka, J., Kudo, Y., Nagano, T., (1998) Neuroreport, pp. 3345-3348. , 9
  • Planchet, E., Kaiser, W.M., (2006) J. Exp. Bot., 57, pp. 3043-3055
  • Miranda, K.M., Espey, M.G., Wink, D.A., (2001) Nitric Oxide, 5, pp. 62-71

Citas:

---------- APA ----------
Ramos, L.C.B., Marchesi, M.S.P., Callejon, D., Baruffi, M.D., Lunardi, C.N., Slep, L.D., Bendhack, L.M.,..., da Silva, R.S. (2016) . Enhanced Antitumor Activity against Melanoma Cancer Cells by Nitric Oxide Release and Photosensitized Generation of Singlet Oxygen from Ruthenium Complexes. European Journal of Inorganic Chemistry, 2016(22), 3592-3597.
http://dx.doi.org/10.1002/ejic.201600217
---------- CHICAGO ----------
Ramos, L.C.B., Marchesi, M.S.P., Callejon, D., Baruffi, M.D., Lunardi, C.N., Slep, L.D., et al. "Enhanced Antitumor Activity against Melanoma Cancer Cells by Nitric Oxide Release and Photosensitized Generation of Singlet Oxygen from Ruthenium Complexes" . European Journal of Inorganic Chemistry 2016, no. 22 (2016) : 3592-3597.
http://dx.doi.org/10.1002/ejic.201600217
---------- MLA ----------
Ramos, L.C.B., Marchesi, M.S.P., Callejon, D., Baruffi, M.D., Lunardi, C.N., Slep, L.D., et al. "Enhanced Antitumor Activity against Melanoma Cancer Cells by Nitric Oxide Release and Photosensitized Generation of Singlet Oxygen from Ruthenium Complexes" . European Journal of Inorganic Chemistry, vol. 2016, no. 22, 2016, pp. 3592-3597.
http://dx.doi.org/10.1002/ejic.201600217
---------- VANCOUVER ----------
Ramos, L.C.B., Marchesi, M.S.P., Callejon, D., Baruffi, M.D., Lunardi, C.N., Slep, L.D., et al. Enhanced Antitumor Activity against Melanoma Cancer Cells by Nitric Oxide Release and Photosensitized Generation of Singlet Oxygen from Ruthenium Complexes. Eur. J. Inorg. Chem. 2016;2016(22):3592-3597.
http://dx.doi.org/10.1002/ejic.201600217