Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The photosensitized electron-transfer oxidation of a series of ethyl sulfides RSEt (1, R = C12H25; 2, PhCH2CH 2; 3, PhCH2; 4, PhCMe2; 5, Ph2CH) has been examined in acetonitrile and the product distribution discussed on the basis of the mechanisms proposed. In nitrogen-flushed solutions, cleaved alcohols and alkenes are formed, whereas under oxygen, in reactions that are 10-70 times faster, sulfoxides and cleaved aldehydes and ketones are formed in addition to the afore-mentioned products. Two sensitizers are compared, 9,10-dicyanoanthracene (DCA) and 2,4,6-triphenylpyrylium tetrafluoroborate (TPP+BF4-), the former giving a higher proportion of the sulfoxide, the latter of cleaved carbonyls. The sulfoxidation is due to the contribution of the singlet oxygen path with DCA. Oxidative cleavage, on the other hand, occurs both with DCA and with TPP+ which is known to produce neither singlet oxygen nor the superoxide anion. This process involves deprotonation from the α position of the sulfide radical cation, but the TPP+ results suggest that O2.- is not necessarily involved and non-activated oxygen forms a weak adduct with the radical cation promoting α-hydrogen transfer, particularly with benzylic derivatives. © Wiley-VCH Verlag GmbH & Co. KGaA, 2008.

Registro:

Documento: Artículo
Título:Photosensitized electron transfer oxidation of sulfides: A steady-state study
Autor:Bonesi, S.M.; Fagnoni, M.; Albini, A.
Filiación:CHIDECAR-CONICET, Dep. Quim. Org., Ciudad Universitaria, 1428 Buenos Aires, Argentina
Dep. Organic Chemistry, University of Pavia, v. Taramelli 10, 27100 Pavia, Italy
Palabras clave:Electron transfer; Oxidation; Photochemistry; Reaction mechanisms; Sulfides
Año:2008
Número:15
Página de inicio:2612
Página de fin:2620
DOI: http://dx.doi.org/10.1002/ejoc.200800048
Título revista:European Journal of Organic Chemistry
Título revista abreviado:Eur. J. Org. Chem.
ISSN:1434193X
CODEN:EJOCF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1434193X_v_n15_p2612_Bonesi

Referencias:

  • Drabowicz, J., Kielbasinski, P., Mikolajczyk, M., (1994) Synthesis of Sulfones, Sulfoxides and Cyclic Sulfides, p. 195. , Eds, S. Patai, Z. Rappoport, Wiley, Chichester
  • Mata, E.G., (1996) Phosphorus Sulfur Silicon Relat. Elem, 117, p. 231
  • Chu, J.W., Trout, B.L., (2004) J. Am. Chem. Soc, 126, p. 900
  • Das, A.K., (2004) Coord. Chem. Rev, 248, p. 81
  • Carreño, M.C., (1995) Chem. Rev, 95, p. 1717
  • Baumstark, A.L., (1986) Bioorg. Chem, 14, p. 326
  • Filipiak, P., Hug, G.L., Charmichael, I., Korzeniowska-Sobczuk, A., Bobrowoski, K., Marciniak, B., (2004) J. Phys. Chem. A, 108, p. 6503
  • Huang, M.L., Rauk, A., (2004) J. Phys. Chem, 108, p. 6222
  • Baciocchi, E., Crescenzi, C., Lanzalunga, O., (1997) Tetrahedron, 53, p. 4469
  • Eriksen, J., Foote, C.S., Parker, T.L., (1977) J. Am. Chem. Soc, 99, p. 6455
  • Soggiu, N., Cardy, H., Habib, J.L., Soumillon, J.P., (1999) J. Photochem. Photobiol. A, 124, p. 1. , d
  • Che, Y., Ma, W., Ren, Y., Chen, C., Zhang, X., Zhao, J., Zang, L., (2005) J. Phys. Chem. B, 109, p. 8270
  • Lacombe, S., Cardy, H., Simon, M., Khoukh, A., Soumillon, J.P., Ayadim, M., (2002) Photochem. Photobiol. Sci, 1, p. 347
  • Pigot, T., Arbitre, T., Hervé, M., Lacombe, S., (2004) Tetrahedron Lett, 45, p. 4047
  • Latour, V., Pigot, T., Simon, M., Cardy, H., Lacombe, S., (2005) Photochem. Photobiol. Sci, 4, p. 221
  • Bobrowski, K., Marciniak, B., Hug, G.L., (1994) J. Photochem. Photobiol. A, 81, p. 159
  • Inbar, S., Linschitz, H., Cohen, S.G., (1982) J. Am. Chem. Soc, 104, p. 1679
  • Ronfard-Haret, J.C., Bensasson, R.V., Gramain, J.C., (1983) Chem. Phys. Lett, 96, p. 31
  • Adam, W., Arguello, J.E., Penenory, A.B., (1998) J. Org. Chem, 63, p. 3905
  • Bosch, E., Kochi, J.K., (1995) J. Org. Chem, 60, p. 3172
  • Iliev, V., Tomova, D., (2002) Catal. Commun, 3, p. 287
  • Alvaro, M., Carbonell, E., Garcia, H., (2004) Appl. Catal. B, 51, p. 195
  • Clennan, E.L., (2001) Acc. Chem. Res, 34, p. 875
  • Clennan, E.L., (1996) Sulfur Rep, 19, p. 171
  • Clennan, E.L., Liao, C., (2006) Tetrahedron, 62, p. 10724
  • Clennan, E.L., Hightower, S.E., Greer, A., (2005) J. Am. Chem. Soc, 127, p. 11819
  • Akasaka, T., Ando, W., (1985) Tetrahedron Lett, 26, p. 5049
  • Baciocchi, E., Del Giacco, T., Elisei, F., Gerini, M.F., Guerra, M., Lapi, A., Liberali, P., (2003) J. Am. Chem. Soc, 125, p. 16444
  • Baiocchi, E., Del Giacco, T., Giombolini, P., Lanzalunga, O., (2006) Tetrahedron, 62, p. 6566
  • Che, Y., Ma, W., Ren, Y., Chen, C., Zhang, X., Zhao, J., Zang, L., (2005) J. Phys. Chem. B, 109, p. 8270
  • Bonesi, S.M., Manet, I., Freccero, M., Fagnoni, M., Albini, A., (2006) Chem. Eur. J, 12, p. 4844
  • Dobrowolski, D.C., Ogilby, P.R., Foote, C.S., (1983) J. Phys. Chem, 87, p. 2261
  • Davidson, R.S., Pratt, J.E., (1984) Tetrahedron, 40, p. 999
  • Manring, L.E., Gu, C.L., Foote, C.S., (1983) J. Phys. Chem, 87, p. 40
  • Darmanyan, A.P., (1984) Chem. Phys. Lett, 110, p. 89
  • Abraham, W., Glänzel, A., Stösser, R., Grummt, U.W., Köppel, H., (1990) J. Photochem. Photobiol, 51, p. 350
  • Breslin, D.T., Fox, M.A., (1993) J. Am. Chem. Soc, 115, p. 11716
  • Egland, R.D., Marken, F., Southern, E.M., (2002) Anal. Chem, 74, p. 1590
  • (1988) Photoinduced Electron Transfer, p. 475. , M. A. Fox, M. Chanon Eds, Elsevier, Amsterdam
  • Saeva, F.D., Olin, G.R., (1980) J. Am. Chem. Soc, 102, p. 299
  • Akaba, R., Sakuragi, H., Tokumaru, K., (1991) J. Chem. Soc. Perkin Trans. 2, p. 291
  • Miranda, M.A., Garcia, H., (1994) Chem. Rev, 94, p. 1063
  • Warzecha, K.D., Demuth, M., Görner, H., (1997) J. Chem. Soc. Faraday Trans, 93, p. 1523
  • Baldovi, M.V., Garcia, H., Miranda, M.A., Primo, J., Soto, J., Vargas, F., (1995) Tetrahedron, 51, p. 8113
  • In a previous study of the N-methylquinolinium photosensitization of sulfide 4, α-methylstyrene and 1-phenylethanol were also found. The percentage of the two compounds varied during irradiation, reasonably, owing to dehydration promoted by the acidity formed during the irradiation see ref.[5b; ΔGET for electron transfer from the sulfides considered to singlet-excited DCA and TPP+, calculated by the Weller equation, ΔG°ET = 23.06[E°(D/D .+) - E°(A.-/A)] - Eexc - e2/εa (ref.[9b]), ranges between +11 and -25 kcal mol-1, based on the reported redox potentials (see ref.[10] and the notes to Table 4). In the case of TPP+ the -e2/εa term is disregarded as no charge separation is involved; Rehm, D., Weller, A., (1970) Isr. J. Chem, 8, p. 259
  • As an example of the ionization potential of the ethyl radical, values between 8.11 and 8.24 eV have been reported, see: a B. Ruscic, J. Berkowitz, L. A. Curtiss, J. A. Pople, J. Chem. Phys. 1989, 91, 114;; Wang, J., Wei, L., Yang, B., Yang, R., Huang, C., Shan, X., Sheng, L., Ji, Q., (2006) Chem. Res. Chin. Univ, 22, p. 375
  • the ionization potential for EtS. is 9.08 eff, see: c M. Ge, J. Wang, X. Zhu, Z. Sun, D. Wang, J. Chem. Phys. 2000, 113, 1866; the oxidation potentials of these radicals, E°(EtS .) = 1.85 V and E°(Et.) ≈ 1.00 V vs. SCE were estimated from the measured IP by the Miller equation, not taking into account the solvation energy which may heavily affect the result; Ioele, M., Steenken, S., Baciocchi, E., (1997) J. Phys. Chem. A, 101, p. 2979
  • Baciocchi, E., Gerini, M.F., Lanzalunga, O., Lapi, A., Lo Piparo, M.G., (2003) Org. Biomol. Chem, 1, p. 422
  • The C-H BDE has been measured as 82.4 kcal/mol for Ph2CHSPh, see: F. G. Bordwell, X. Zhang, J. P. Cheng, J. Org. Chem. 1991, 56, 3216;; lower values were proposed for related derivatives, see: E. Baciocchi, C. Rol, E. Scamosci, G. V. Sebastiani, J. Org. Chem. 1991, 56, 5498; Bordwell, F.G., Zhang, X.M., (1994) J. Am. Chem. Soc, 11 (6), p. 973. , In related compounds it was found that the C-H energy changes by ≤1 kcal/mol when an EtS is substituted for a PhS group
  • Thus, in the first instance, we assume a value of 83 kcal mol -1 (E°(H.) = -2.01 V vs. SCE): D. M. Wayner, V. D. Parker, Acc. Chem. Res. 1993, 26, 287. These values give BDE = 5.8 kcal mol-1 for 5.+ and 4.8 kcal mol-1 for 3.+ and thus BDFE reasonably negative for both radical cations; Freccero, M., Pratt, A., Albini, A., Long, C., (1998) J. Am. Chem. Soc, 120, p. 284. , See, for example: a
  • Baciocchi, E., Bietti, M., Lanzalunga, O., (2006) J. Phys. Org. Chem, 19, p. 467
  • In the case of the benzyl cation, ΔG, 23.06[E°(A., E°PhCH2 , 37.3 kcal mol-1 with DCA and -25.4 kcal mol -1 with TPP, with PhCMe2, 24.2 and -28.8 kcal mol-1, and with Ph2CH+ 28.8 and 16.1 kcal mol-1; The oxidation potential of α-thioalkyl radicals should not be significantly different to those of α-hydroxyalkyl radicals e.g, Me 2C.OH, 0.61 V vs. SCE, a value affected by a large uncertainty, which would make oxidation, at least by TPP, viable, see: T. Lund, D. D. M. Wayner, M. Jonsson, A. G. Larsen, K. Daasbjerg, J. Am. Chem. Soc. 2001, 123, 12590; Bonesi, S.M., Fagnoni, M., Monti, S., Albini, A., (2006) Tetrahedron, 62, p. 10716
  • Bonesi, S.M., Mella, M., d'Alessandro, N., Aloisi, G.G., Vanossi, M., Albini, A., (1998) J. Org. Chem, 63, p. 9946
  • Liang, J.J., Gu, C.L., Kacher, M.L., Foote, C.S., (1983) J. Am. Chem. Soc, 105, p. 4717
  • Clennan, E.L., Greer, A., (1996) J. Org. Chem, 61, p. 4793
  • Jensen, F., Greer, A., Clennan, E.L., (1998) J. Am. Chem. Soc, 120, p. 4439
  • Clennan, E.L., Wang, D., Clifton, C., Chen, M.F., (1997) J. Am. Chem. Soc, 119, p. 9081
  • Toutchine, A., Aebischer, D., Clennan, E.L., (2001) J. Am. Chem. Soc, 123, p. 4996
  • Ando, W., Kabe, Y., Kobayashi, S., Takyu, C., Yamagishi, A., Inaba, H., (1980) J. Am. Chem. Soc, 102, p. 4526
  • The interaction of this adduct with a Me2S molecule leads to a covalently bound radical cation, Me2S+-OO-S .Me2, through a strongly exoergonic process and to the sulfoxide derived from it. Calculations show that the Me2S +.O2. complex is somewhat destabilized with respect to the reagents (ΔH = +6 kcal mol-1), but similarly intermediates 6 and 6′ are also destabilized with respect to R2S + 1O2 by about the same amount,[5,6] although in every case subsequent paths from such intermediates to the sulfoxide are strongly exothermic; Del Giacco, T., Lipparoni, L., Ranchella, M., Rol, C., Sebastiani, G.V., (2001) J. Chem. Soc. Perkin Trans. 2, p. 1802
  • Branchi, B., Bietti, M., Ercolani, G., Izquierdo, M.A., Miranda, M.A., (2004) J. Org. Chem, 69, p. 8874
  • Flash photolysis experiments with the Ph2S/TPP+ system showed no oxygen quenching of either the sulfide radical cation or of TPP.[6, whereas the lifetimes of both R2S, and DCA, was shortened in the corresponding experiments with DCA because of ET to O2 from the latter and reaction with O 2, of the former, path e, This proves that the rate constant for the reaction of both intermediates is kO2 < 1 × 106 M-1 S-1, but does not preclude this process having a role in steady-state experiments. Indeed, the reaction rate of R2S, with oxygen depends linearly on the intermediate concentration and thus on the intensity of the absorbed light flux, k[Intermediate][O2, rather than on the square of the flux as the reaction with superoxide, k[Intermediate] 2; There is some literature evidence that a further transient is involved in the reoxidation of the TPP. radical and it may well be that this is less efficient in BET than TPP, DCA, or O 2, Actually, it is known that TPP. is reoxidized to TPP+ by reaction with oxygen,[26] the reoxidation probably involves dimerization to TPP-TPP and SET to TPP-TPP, which cleaves to TPP, TPP, 10d] That TPP. ultimately gives back reoxidized TPP, is also indicated by the fact that this sensitizer is only partially consumed when used in solution and not at all when using the silica-absorbed or zeolited-encapsulated materials.[27, 26] D. Jacobi, W. Abraham, U. Pischel, L. Grubert, R. Stösser, W. Schnabbel, J. Chem. Soc. Perkin Trans. 2 1999, 1695; Alvaro, M., Carbonell, E., Garcia, H., (2004) Appl. Catal., B, 51, p. 195
  • Tung, C.H., Guan, J.Q., (1998) J. Am. Chem. Soc, 120, p. 11874
  • Kojima, M., Ishida, A., Takamuku, S., (1998) Bull. Chem. Soc. Jpn, 71, p. 2211
  • Tamai, T., Ichinose, N., Tanaka, T., Sasuga, T., Hashida, I., Mizuno, K., (1998) J. Org. Chem, 63, p. 3204
  • Adam, W., Haas, W., Lohray, B.B., (1991) J. Am. Chem. Soc, 113, p. 6202
  • Lewis, F.D., Kojima, M., (1988) J. Am. Chem. Soc, 110, p. 8664
  • Fehnel, E.A., Cormack, M., (1949) J. Am. Chem. Soc, 71, p. 84
  • Skrettas, C.G., Mischa-Skrettas, M., (1979) J. Am. Chem. Soc, 44, p. 714
  • Erikson, J., Foote, C.S., (1980) J. Am. Chem. Soc, 102, p. 6083
  • Cerniani, A., Modena, G., Todesco, P.G., (1960) Gazz. Chim. Ital, 90, p. 3
  • Carson, J.F., Wong, F.F., (1959) J. Org. Chem, 24, p. 175
  • McCullough, J.P., Finke, H.L., Hubbard, W.N., Todd, S.S., Messerly, J.F., Doublin, D.R., Waddington, G., (1961) J. Phys. Chem, 65, p. 784
  • Colussi, A.J., Benson, S.W., (1977) Int. J. Chem. Kinet, 9, p. 295
  • Fine, D.H., Westmore, J.B., (1969) J. Chem. Soc. D, p. 273
  • Denisov, E.T., (1995) Russ. J. Phys. Chem. (Engl. Transl.), 69, p. 396
  • Koizumi, T., Fuchigami, T., Nonaka, T., (1989) Bull. Chem. Soc. Jpn, 62, p. 219
  • Wayner, D.M., Houmam, A., (1998) Acta Chem. Scand, 52, p. 377
  • Verevkin, S.P., Krasnykh, E.L., Wright, J.S., (2003) Phys. Chem. Chem. Phys, 5, p. 2605
  • Rossi, M.J., McMillen, D.F., Golden, D.M., (1984) J. Phys. Chem, 88, p. 5031

Citas:

---------- APA ----------
Bonesi, S.M., Fagnoni, M. & Albini, A. (2008) . Photosensitized electron transfer oxidation of sulfides: A steady-state study. European Journal of Organic Chemistry(15), 2612-2620.
http://dx.doi.org/10.1002/ejoc.200800048
---------- CHICAGO ----------
Bonesi, S.M., Fagnoni, M., Albini, A. "Photosensitized electron transfer oxidation of sulfides: A steady-state study" . European Journal of Organic Chemistry, no. 15 (2008) : 2612-2620.
http://dx.doi.org/10.1002/ejoc.200800048
---------- MLA ----------
Bonesi, S.M., Fagnoni, M., Albini, A. "Photosensitized electron transfer oxidation of sulfides: A steady-state study" . European Journal of Organic Chemistry, no. 15, 2008, pp. 2612-2620.
http://dx.doi.org/10.1002/ejoc.200800048
---------- VANCOUVER ----------
Bonesi, S.M., Fagnoni, M., Albini, A. Photosensitized electron transfer oxidation of sulfides: A steady-state study. Eur. J. Org. Chem. 2008(15):2612-2620.
http://dx.doi.org/10.1002/ejoc.200800048