Artículo

Nasrallah, A.; Grelier, G.; Lapuh, M.I.; Duran, F.J.; Darses, B.; Dauban, P. "Dirhodium(II)-Mediated Alkene Epoxidation with Iodine(III) Oxidants" (2018) European Journal of Organic Chemistry. 2018(42):5836-5842
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Dirhodium(II) complexes and iodine(III) oxidants have found useful applications in synthetic nitrene chemistry. In this study, the combination of the dirhodium(II) complex Rh2(tpa)4 (tpa = triphenylacetate) with the iodine(III) oxidant PhI(OPiv)2 is shown to promote the epoxidation of alkenes in the presence of 2 equivalents of water. The reaction can be applied to diversely substituted alkenes and the corresponding epoxides are isolated with yields of up to 90 %. A possible mechanism involves the dirhodium(II) complex as a Lewis acid species that would tune the oxidizing character of the iodine(III) reagent. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Registro:

Documento: Artículo
Título:Dirhodium(II)-Mediated Alkene Epoxidation with Iodine(III) Oxidants
Autor:Nasrallah, A.; Grelier, G.; Lapuh, M.I.; Duran, F.J.; Darses, B.; Dauban, P.
Filiación:Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, Gif-sur-Yvette, 91198, France
Departamento de Quimica Organica and UMYMFOR (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Alkenes; Epoxidation; Hypervalent Iodine; Lewis acids; Rhodium
Año:2018
Volumen:2018
Número:42
Página de inicio:5836
Página de fin:5842
DOI: http://dx.doi.org/10.1002/ejoc.201800306
Título revista:European Journal of Organic Chemistry
Título revista abreviado:Eur. J. Org. Chem.
ISSN:1434193X
CODEN:EJOCF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1434193X_v2018_n42_p5836_Nasrallah

Referencias:

  • Stang, P.J., Zhdankin, V.V., (1996) Chem. Rev., 96, p. 1123. , For relevant general reviews, see a)
  • Zhdankin, V.V., Stang, P.J., (2002) Chem. Rev., 102, p. 2523
  • Zhdankin, V.V., Stang, P.J., (2008) Chem. Rev., 108, p. 5299
  • Yoshimura, A., Zhdankin, V.V., (2016) Chem. Rev., 116, p. 3328
  • Ladziata, U., Zhdankin, V.V., (2006) ARKIVOC, ix, p. 26
  • Zhdankin, V.V., (2009) ARKIVOC, i, pp. 1-62
  • Varvoglis, A., (1997) Hypervalent Iodine in Organic Synthesis, , For excellent monographs on hypervalent iodine chemistry, see a), Academic Press, London
  • Wirth, T., (2003) Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis, 224. , (Ed.,), Topics in Current Chemistry,, Springer, Berlin
  • Zhdankin, V.V., (2014) Hypervalent Iodine Chemistry, , John Wiley & Sons, Chichester
  • Wirth, T., (2016) Hypervalent Iodine Chemistry, 373. , (Ed., Topics in Current Chemistry, Springer, Berlin
  • Brown, M., Farid, U., Wirth, T., (2013) Synlett, 24, p. 424
  • Romero, R.M., Wöste, T.H., Muniz, K., (2014) Chem. Asian J., 9, p. 972
  • Fujita, M., (2017) Tetrahedron Lett., 58, p. 4409
  • Moriarty, R.M., Gupta, S.C., Hu, H., Berenschot, D.R., White, K.B., (1981) J. Am. Chem. Soc., 103, p. 686
  • Ochiai, M., Nakanishi, A., Suefuji, T., (2000) Org. Lett., 2, p. 2923
  • McQuaid, K.M., Pettus, T.R.R., (2004) Synlett, p. 2403
  • Lee, S., McMillan, D.W.C., (2006) Tetrahedron, 62, p. 11413
  • Ito, Y.N., Katsuki, T., (2001) Asymmetric Oxidation Reactions, pp. 19-37. , “Oxidation of the C=C bond” in, (Ed. T. Katsuki),, Oxford University Press, ch. 2.1
  • Katsuki, T., (2003) Synlett, p. 281
  • Doyle, M.P., McKervey, M.A., Ye, T., (1998) Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides, , For excellent overviews, see a), Wiley, New York
  • Davies, H.M.L., Antoulinakis, E.G., (2001) Org. React., 57, p. 1
  • Doyle, M.P., Ren, T., Karlin, K.D., (2001) Prog. Inorg. Chem., 49, p. 113
  • Merlic, C.A., Zechman, A.L., (2003) Synthesis, p. 1137
  • Davies, H.M.L., Beckwith, R.E.J., (2003) Chem. Rev., 103, p. 2861
  • Wee, A.G.H., (2006) Curr. Org. Synth., 3, p. 499
  • Davies, H.M.L., Manning, J.R., (2008) Nature, 451, p. 417
  • Doyle, M.P., Duffy, R., Ratnikov, M., Zhou, L., (2010) Chem. Rev., 110, p. 704
  • Ford, A., Miel, H., Ring, A., Slattery, C.N., Maguire, A.R., McKervey, M.A., (2015) Chem. Rev., 115, p. 9981
  • Uemura, S.P., Patil, S.R., (1982) Chem. Lett., 11, p. 1743
  • Catino, A.J., Forslund, R.E., Doyle, M.P., (2004) J. Am. Chem. Soc., 126, p. 13622
  • Catino, A.J., Nichols, J.M., Choi, H., Gottipamula, S., Doyle, M.P., (2005) Org. Lett., 7, p. 5167
  • McLaughlin, E.C., Choi, H., Wang, K., Chiou, G., Doyle, M.P., (2009) J. Org. Chem., 74, p. 730
  • Ratnikov, M.O., Doyle, M.P., (2014) Mendeleev Commun., 24, p. 187
  • Coelho, J.A.S., Trindade, A.F., Wanke, R., Rocha, B.G.M., Veiros, L.F., Gois, P.M.P., Pombeiro, A.J.L., Afonso, C.A.M., (2013) Eur. J. Org. Chem., p. 1471
  • Wang, Y., Kuang, Y., Wang, Y., (2015) Chem. Commun., 51, p. 5852
  • Zhao, L., Wang, Y., Ma, Z., Wang, Y., (2017) Inorg. Chem., 56, p. 8166
  • Lin, Y., Zhu, L., Lan, Y., Rao, Y., (2015) Chem. Eur. J., 21, p. 14937
  • Shabashov, D., Doyle, M.P., (2013) Tetrahedron, 69, p. 10009
  • Müller, P., (2004) Acc. Chem. Res., 37, p. 243. , For reviews, see a)
  • Yusubov, M.S., Yoshimura, A., Zhdankin, V.V., (2016) ARKIVOC, i, p. 342
  • Müller, P., Fernandez, D., (1995) Helv. Chim. Acta, 78, p. 947. , For some relevant examples, see c)
  • Wurz, R.P., Charette, A.B., (2003) Org. Lett., 5, p. 2327
  • Goudreau, S.R., Marcoux, D., Charette, A.B., Hughes, D., (2010) Org. Synth., 87, p. 115
  • Wolckenhauer, S.A., Devlin, A.S., Du Bois, J., (2007) Org. Lett., 9, p. 4363
  • Zhu, C., Yoshimura, A., Ji, L., Wei, Y., Nemykin, V.N., Zhdankin, V.V., (2012) Org. Lett., 14, p. 3170
  • Müller, P., Fruit, C., (2003) Chem. Rev., 103, p. 2905. , For reviews, see a)
  • Dauban, P., Dodd, R.H., (2003) Synlett, p. 1571
  • Chang, J.W.W., Ton, T.M.U., Chan, P.W.H., (2011) Chem. Rec., 11, p. 331
  • Du Bois, J., (2011) Org. Process Res. Dev., 15, p. 758
  • Roizen, J.L., Harvey, M.E., Du Bois, J., (2012) Acc. Chem. Res., 45, p. 911
  • Karila, D., Dodd, R.H., (2011) Curr. Org. Chem., 15, p. 1507
  • Dequirez, G., Pons, V., Dauban, P., (2012) Angew. Chem. Int. Ed., 51, p. 7384
  • (2012) Angew. Chem., 124, p. 7498
  • Buendia, J., Grelier, G., Dauban, P., (2015) Adv. Organomet. Chem., 64, p. 77
  • Breslow, R., Gellman, S.H., (1983) J. Am. Chem. Soc., 105, p. 6728. , For relevant studies, see a)
  • Müller, P., Baud, C., Jacquier, Y., (1996) Tetrahedron, 52, p. 1543
  • Nägeli, I., Baud, C., Bernardinelli, G., Jacquier, Y., Moran, M., Müller, P., (1997) Helv. Chim. Acta, 80, p. 1087
  • Espino, C.G., Du Bois, J., (2001) Angew. Chem. Int. Ed., 40, p. 598
  • (2001) Angew. Chem., 113, p. 618
  • Espino, C.G., Wehn, P.M., Chow, J., Du Bois, J., (2001) J. Am. Chem. Soc., 123, p. 6935
  • Guthikonda, K., Du Bois, J., (2002) J. Am. Chem. Soc., 124, p. 13672
  • Fiori, K.W., Du Bois, J., (2007) J. Am. Chem. Soc., 129, p. 562
  • Perry, R.H., Cahill, T.J., III, Roizen, J.L., Du Bois, J., Zare, R.N., (2012) Proc. Natl. Acad. Sci. USA, 109, p. 18295
  • Roizen, J.L., Zalatan, D.N., Du Bois, J., (2013) Angew. Chem. Int. Ed., 52, p. 11343
  • (2013) Angew. Chem., 125, p. 11553
  • Anada, M., Tanaka, M., Shimada, N., Nambu, H., Yamawaki, M., Hashimoto, S., (2009) Tetrahedron, 65, p. 3069
  • Nörder, A., Warren, S.A., Herdtweck, E., Huber, S.M., Bach, T., (2012) J. Am. Chem. Soc., 134, p. 13524
  • Liang, C., Collet, F., Robert-Peillard, F., Müller, P., Dodd, R.H., Dauban, P., (2008) J. Am. Chem. Soc., 130, p. 343
  • Ciesielski, J., Dequirez, G., Retailleau, P., Gandon, V., Dauban, P., (2016) Chem. Eur. J., 22, p. 9338
  • Buendia, J., Darses, B., Dauban, P., (2015) Angew. Chem. Int. Ed., 54, p. 5697
  • (2015) Angew. Chem., 127, p. 5789
  • Buendia, J., Grelier, G., Darses, B., Jarvis, A.G., Taran, F., Dauban, P., (2016) Angew. Chem. Int. Ed., 55, p. 7530
  • (2016) Angew. Chem., 128, p. 7656
  • Darses, B., Rodrigues, R., Neuville, L., Mazurais, M., Dauban, P., (2017) Chem. Commun., 53, p. 493
  • Hazelard, D., Nocquet, P.-A., Compain, P., (2017) Org. Chem. Front., 4, p. 2500
  • Espino, C.G., Fiori, K.W., Kim, M., Du Bois, J., (2004) J. Am. Chem. Soc., 126, p. 15378
  • Clemente-Tejeda, D., Lopez-Moreno, A., Bernejo, F.A., (2013) Tetrahedron, 69, p. 2977
  • Though the difference in yields between the entries 12 and 13 is not significant, the choice of PhI(OPiv)2 as the oxidant to study the scope of the reaction was motivated by the reaction of alkene 1i with PhI(OAc)2 that leads to the expected epoxide 2i in only 40 % yield [70 % with PhI(OPiv)2; see Table]; The reaction with a tetrasubstituted alkene only leads to the recovery of the starting material; An allylic alcohol such as geraniol does not afford the corresponding epoxide under the reaction conditions. A complex mixture of products, instead, is obtained as indicated by the, H NMR of the crude; In order to circumvent the lack of reactivity of α,β-unsaturated ketones, these were converted to cyclic ketals. However, application of the reaction conditions to the latter only leads to the starting ketone following cleavage of the ketal; It is worth mentioning that the reaction of m-CPBA with the ortho-cyano styrene only leads to the corresponding epoxide 2s in 13 % yield. See: “ACC inhibitors and uses thereof”, PCT/ WO 2013071169A1, May 16, 2013; Miyamoto, K., Tada, N., Ochiai, M., (2007) J. Am. Chem. Soc., 129, p. 2772
  • Use of other Lewis acids such as Cu(OTf)2, Pd(OAc)2, BF3·OEt2, Sc(OTf)3, CeCl3, LiCl, or TMSOTf, in the epoxidation of 1i leads to either its decomposition or the formation of the expected product 2i in very low yield; Yang, Y., Diederich, F., Valentine, J.S., (1991) J. Am. Chem. Soc., 113, p. 7195. , For a previous Lewis acid-catalyzed olefin epoxidation with an iodine(III) oxidant, see
  • The electron-withdrawing property of the ligand on the dirhodium complex would allow for tuning its Lewis acidity. The latter should be Lewis acidic enough for the activation of the hypervalent iodine reagent, however, a too strong Lewis acid is likely to increase its oxidizing character thereby inducing the decomposition of the resulting epoxide, as demonstrated by the study of Ochiai (see ref. 21); Zhang, J., Szabo, K.J., Himo, F., (2017) ACS Catal., 7, p. 1093. , It should be mentioned that a recent theoretical study supports a metathesis mechanism for the functionalization of alkenes using a hypervalent fluoroiodine reagent
  • Šiška, P., Danková, D., Nitrayová, C., Fodran, P., Špánik, I., Szolcsányi, P., (2017) Synth. Commun., 47, p. 1582
  • Méou, A., Garcia, M.A., Brun, P., (1999) J. Mol. Catal. A, 138, p. 221
  • Vig, O.P., Trehan, I.R., Kad, G.L., Ghose, J., (1983) Indian J. Chem, 22B, p. 515
  • Steinmetz, H., Li, J., Fu, C., Zaburannyi, N., Kunze, B., Harmrolfs, K., Schmitt, V., Müller, R., (2016) Angew. Chem. Int. Ed., 55, p. 10113
  • (2016) Angew. Chem., 128, p. 10267
  • Kim, Y.H., Chung, B.C., (1983) J. Org. Chem., 48, p. 1562
  • Mordini, A., Peruzzi, D., Russo, F., Valacchi, M., Reginato, G., Brandi, A., (2005) Tetrahedron, 61, p. 3349
  • Harrison, T.J., Rabbat, P.M.A., Leighton, J.L., (2012) Org. Lett., 14, p. 4890
  • Tsuji, J., Kataoka, H., Kobayashi, Y., (1981) Tetrahedron Lett., 22, p. 2575
  • Wang, Z.-X., Tu, Y., Frohn, M., Zhang, J.-R., Shi, Y., (1997) J. Am. Chem. Soc., 119, p. 11224
  • Flippin, L.A., Brown, P.A., Jalali-Araghi, K., (1989) J. Org. Chem., 54, p. 3588
  • Mukaiyama, T., Imagawa, K., Yamada, T., Takai, T., (1992) Chem. Lett., 21, p. 231
  • Pedragosa-Moreau, S., Morisseau, C., Zylber, J., Archelas, A., Baratti, J., Furstoss, R., (1996) J. Org. Chem., 61, p. 7402
  • Qian, S., He, T., Wang, W., He, Y., Zhang, M., Yang, L., Li, G., Wang, Z., (2016) Bioorg. Med. Chem., 24, p. 6194

Citas:

---------- APA ----------
Nasrallah, A., Grelier, G., Lapuh, M.I., Duran, F.J., Darses, B. & Dauban, P. (2018) . Dirhodium(II)-Mediated Alkene Epoxidation with Iodine(III) Oxidants. European Journal of Organic Chemistry, 2018(42), 5836-5842.
http://dx.doi.org/10.1002/ejoc.201800306
---------- CHICAGO ----------
Nasrallah, A., Grelier, G., Lapuh, M.I., Duran, F.J., Darses, B., Dauban, P. "Dirhodium(II)-Mediated Alkene Epoxidation with Iodine(III) Oxidants" . European Journal of Organic Chemistry 2018, no. 42 (2018) : 5836-5842.
http://dx.doi.org/10.1002/ejoc.201800306
---------- MLA ----------
Nasrallah, A., Grelier, G., Lapuh, M.I., Duran, F.J., Darses, B., Dauban, P. "Dirhodium(II)-Mediated Alkene Epoxidation with Iodine(III) Oxidants" . European Journal of Organic Chemistry, vol. 2018, no. 42, 2018, pp. 5836-5842.
http://dx.doi.org/10.1002/ejoc.201800306
---------- VANCOUVER ----------
Nasrallah, A., Grelier, G., Lapuh, M.I., Duran, F.J., Darses, B., Dauban, P. Dirhodium(II)-Mediated Alkene Epoxidation with Iodine(III) Oxidants. Eur. J. Org. Chem. 2018;2018(42):5836-5842.
http://dx.doi.org/10.1002/ejoc.201800306