Artículo

Montenegro, A.C.; Amorebieta, V.T.; Slep, L.D.; Martín, D.F.; Roncaroli, F.; Murgida, D.H.; Bari, S.E.; Olabe, J.A. "Three redox states of nitrosyl: NO+, NO•, and NO-/HNO interconvert reversibly on the same pentacyanoferrate(II) platform" (2009) Angewandte Chemie - International Edition. 48(23):4213-4216
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Not so elusive: [FeII(CN)5(HNO)]3- has been characterized spectroscopically after the two-electron reduction of nitroprusside (see scheme). The complex is stable at pH 6, slowly decomposing to [Fe(CN)6]4- and N2O. It is deprotonated at increasing pH value with oxidation of bound NO- to [Fe II(CN)5(NO)]3-. [FeII(CN) 5 (HNO)]3- is the first non-heme iron-nitroxyl complex prepared in aqueous solution that is reversibly redox-active under biologically relevant conditions. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

Registro:

Documento: Artículo
Título:Three redox states of nitrosyl: NO+, NO•, and NO-/HNO interconvert reversibly on the same pentacyanoferrate(II) platform
Autor:Montenegro, A.C.; Amorebieta, V.T.; Slep, L.D.; Martín, D.F.; Roncaroli, F.; Murgida, D.H.; Bari, S.E.; Olabe, J.A.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and INQUIMAE, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Departamento de Química, Facultad de Ciencias Exactas Universidad Nacional de Mar del Plata, Funesy Roca, Mar del Plata, B7602AYL, Argentina
Palabras clave:Cyanides; Iron; Nitrogen oxides; Nitroxyl complex; Redox chemistry; Aqueous solutions; Heme iron; Nitroxyl complex; Pentacyanoferrate; pH value; Redox chemistry; Redox state; Redox-active; Two-electron reduction; Cyanides; Iron oxides; Nitric oxide; Nitrogen oxides; Porphyrins; Iron compounds; ferrous ion; nitric oxide; nitroprusside sodium; pentacyanoferrate (II); chemistry; infrared spectroscopy; nuclear magnetic resonance spectroscopy; oxidation reduction reaction; Ferrous Compounds; Magnetic Resonance Spectroscopy; Nitric Oxide; Nitroprusside; Oxidation-Reduction; Spectroscopy, Fourier Transform Infrared
Año:2009
Volumen:48
Número:23
Página de inicio:4213
Página de fin:4216
DOI: http://dx.doi.org/10.1002/anie.200806229
Título revista:Angewandte Chemie - International Edition
Título revista abreviado:Angew. Chem. Int. Ed.
ISSN:14337851
CODEN:ACIEA
CAS:ferrous ion, 15438-31-0; nitric oxide, 10102-43-9; nitroprusside sodium, 14402-89-2, 15078-28-1; Ferrous Compounds; Nitric Oxide; Nitroprusside; pentacyanoferrate (II)
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14337851_v48_n23_p4213_Montenegro

Referencias:

  • Barley, M.H., Takeuchi, K., Meyer, T.J., (1986) J. Am. Chem. Soc, 108, pp. 5876-5885
  • García Serres, R., Grapperhaus, C.A., Bothe, E., Bill, E., Weyhermüller, T., Neese, F., Wieghardt, K., (2004) J. Am. Chem. Soc, 126, pp. 5138-5153
  • Wasser, I.M., de Vries, S., Moënne-Loccoz, P., Schröder, I., Karlin, K.D., (2002) Chem. Rev, 102, pp. 1201-1234
  • (2000) Nitric Oxide: Biology and Pathobiology, , Ed, L. J. Ignarro, Academic Press, San Diego
  • Roncaroli, F., Videla, M., Slep, L.D., Olabe, J.A., (2007) Coord. Chem. Rev, 251, pp. 1903-1930
  • McCleverty, J., (2004) Chem. Rev, 104, pp. 403-418
  • Enemark, J.H., Feltham, R.D., (1974) Coord. Chem. Rev, 13, pp. 339-406
  • Feltham, R.D., Enemark, J.H., (1981) Top. Inorg. Organomet. Stereochem, 12, pp. 155-215
  • Hannibal, L., Smith, C.A., Jacobsen, D.W., Brasch, N.E., (2007) Angew. Chem, 119, pp. 5232-5235
  • (2007) Angew. Chem. Int. Ed, 46, pp. 5140-5143
  • Scheidt, W.R., Hoard, J.L., (1973) J. Am. Chem. Soc, 95, pp. 8281-8288
  • Wolak, M., Zahl, A., Schneppensieper, T., Stochel, G., van Eldik, R., (2001) J. Am. Chem. Soc, 123, pp. 9780-9791
  • Snyder, D.A., Weaver, D.L., (1970) Inorg. Chem, 9, pp. 2760-2767
  • Clarkson, S.G., Basolo, F., (1973) Inorg. Chem, 12, pp. 1528-1534
  • Ardon, M., Cohen, S., (1993) Inorg. Chem, 32, pp. 3241-3243
  • Levina, A., Turner, P., Lay, P.A., (2003) Inorg. Chem, 42, pp. 5392-5398
  • Song, W., Ellern, A., Bakac, A., (2008) Inorg. Chem, 47, pp. 8405-8411
  • Wanat, A., Schneppensieper, T., Stochel, G., van Eldik, R., Bill, E., Wieghardt, K., (2002) Inorg. Chem, 41, pp. 4-10
  • Brown, C.A., Pavlovsky, M.A., Westre, T.E., Zhang, Y., Hedman, B., Hodgson, K.O., Solomon, E.I., (1995) J. Am. Chem. Soc, 117, pp. 715-732
  • Peterson, E.S., Larsen, R.D., Abbot, E.H., (1988) Inorg. Chem, 27, pp. 3514-3518
  • Farmer, P.J., Sulc, F., (2005) J. Inorg. Biochem, 99, pp. 166-184
  • Wilson, R.D., Ibers, J.A., (1979) Inorg. Chem, 18, pp. 336-343
  • Melenkivitz, R., Hillhouse, G.L., (2002) Chem. Commun, pp. 660-661
  • Sellmann, D., Gottschalk-Gaudig, T., Häussinger, D., Heinemann, F.W., Hess, B.A., (2001) Chem. Eur. J, 7, pp. 2099-2103
  • Lin, R., Farmer, P.J., (2000) J. Am. Chem. Soc, 122, pp. 2393-2394
  • Immoos, C.E., Sulc, F., Farmer, P.J., Czarnecki, K., Bocian, D., Levina, A., Aitken, J.B., Lay, P.A., (2005) J. Am. Chem. Soc, 127, pp. 814-815
  • Butler, A.R., Megson, I.L., (2002) Chem. Rev, 102, pp. 1155-1165
  • Olabe, J.A., (2008) Dalton Trans, pp. 3633-3648
  • Roncaroli, F., van Eldik, R., Olabe, J.A., (2005) Inorg. Chem, 44, pp. 2781-2790
  • Irvine, J.C., Ritchie, R.H., Favaloro, J.L., Andrews, K.L., Widdop, R.E., Kemp-Harper, B.K., (2008) Trends Pharmacol. Sci, 29, pp. 601-608
  • Paolocci, N., Jackson, M.I., Lopez, B.E., Miranda, K., Tocchetti, C.G., Wink, D.A., Hobbs, A.J., Fukuto, J.M., (2007) Pharmacol. Ther, 113, pp. 442-458
  • Fukuto, J.M., Bartberger, M.D., Dutton, A.S., Paolocci, N., Wink, D.A., Houk, K.N., (2005) Chem. Res. Toxicol, 18, pp. 790-801
  • Lui, S.M., Liang, W., Soriano, A., Cowan, J.A., (1994) J. Am. Chem. Soc, 116, pp. 4531-4536
  • Einsle, O., Messerschmidt, A., Huber, R., Kroneck, P.M.H., Neese, F., (2002) J. Am. Chem. Soc, 124, pp. 11737-11745
  • Hendrich, M.P., Logan, M., Andersson, K.K., Arciero, D.M., Lipscomb, J.D., Hooper, A.B., (1994) J. Am. Chem. Soc, 116, pp. 11961-11968
  • Masek, J., Maslova, E., (1974) Collect. Czech. Chem. Commun, 39, pp. 2141-2160
  • González Lebrero, M., Scherlis, D.A., Estiú, G.L., Olabe, J.A., Estrin, D.A., (2001) Inorg. Chem, 40, pp. 4127-4133
  • Scaife, C.W.J., Wilkins, R.G., (1980) Inorg. Chem, 19, pp. 3244-3247
  • Cheney, R.P., Simic, M.G., Hoffman, M.Z., Taub, I.A., Asmus, K.D., (1977) Inorg. Chem, 16, pp. 2187-2192
  • Schwane, J.D., Ashby, M.T., (2002) J. Am. Chem. Soc, 124, pp. 6822-6823
  • Kunkely, H., Vogler, A., (1998) J. Photochem. Photobiol, 114, pp. 197-199
  • Soria, D.B., Amalvy, J.I., Piro, O.E., Castellano, E.E., Aymonino, P.J., (1996) J. Chem. Crystallogr, 26, pp. 325-330
  • Moreno, N.G.D.V., Katz, N.E., Olabe, J.A., Aymonino, P.J., (1978) Inorg. Chim. Acta, 35, pp. 183-188
  • Paulat, F., Berto, T.C., DeBeer George, S., Goodrich, L., Praneeth, V.K.K., Sulok, C.D., Lehnert, N., (2008) Inorg. Chem, 47, pp. 11449-11451
  • In resonance Raman spectroscopy, the electronic excitation at the Fe II(HNO) chromophore involves the activation of coupled vibrations. As per theoretical predictions we expect only two vNO stretchings;[19] the third band at 1214 cm-1 could be traced to decomposition products, to additional chemistry eventually leading to HNO dimerization (for bridging hyponitrite data, see: H. Toyuki, Spectrochim. Acta Part A 1971, 27, 985-990), or to NO complexes of lower coordination number, which correspond to trans-labilized cyanides; Shafirovich, V., Lymar, S.V., (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 7340-7345
  • Alluisetti, G.E., Almaraz, A.E., Amorebieta, V.T., Doctorovich, F., Olabe, J.A., (2004) J. Am. Chem. Soc, 126, pp. 13432-13442
  • Gutiérrez, M.M., Amorebieta, V.T., Estiú, G.L., Olabe, J.A., (2002) J. Am. Chem. Soc, 124, pp. 10307-10319
  • Chacón Villalba, M.E., Varetti, E.L., Aymonino, P.J., (1997) Vib. Spectrosc, 14, pp. 275-286

Citas:

---------- APA ----------
Montenegro, A.C., Amorebieta, V.T., Slep, L.D., Martín, D.F., Roncaroli, F., Murgida, D.H., Bari, S.E.,..., Olabe, J.A. (2009) . Three redox states of nitrosyl: NO+, NO•, and NO-/HNO interconvert reversibly on the same pentacyanoferrate(II) platform. Angewandte Chemie - International Edition, 48(23), 4213-4216.
http://dx.doi.org/10.1002/anie.200806229
---------- CHICAGO ----------
Montenegro, A.C., Amorebieta, V.T., Slep, L.D., Martín, D.F., Roncaroli, F., Murgida, D.H., et al. "Three redox states of nitrosyl: NO+, NO•, and NO-/HNO interconvert reversibly on the same pentacyanoferrate(II) platform" . Angewandte Chemie - International Edition 48, no. 23 (2009) : 4213-4216.
http://dx.doi.org/10.1002/anie.200806229
---------- MLA ----------
Montenegro, A.C., Amorebieta, V.T., Slep, L.D., Martín, D.F., Roncaroli, F., Murgida, D.H., et al. "Three redox states of nitrosyl: NO+, NO•, and NO-/HNO interconvert reversibly on the same pentacyanoferrate(II) platform" . Angewandte Chemie - International Edition, vol. 48, no. 23, 2009, pp. 4213-4216.
http://dx.doi.org/10.1002/anie.200806229
---------- VANCOUVER ----------
Montenegro, A.C., Amorebieta, V.T., Slep, L.D., Martín, D.F., Roncaroli, F., Murgida, D.H., et al. Three redox states of nitrosyl: NO+, NO•, and NO-/HNO interconvert reversibly on the same pentacyanoferrate(II) platform. Angew. Chem. Int. Ed. 2009;48(23):4213-4216.
http://dx.doi.org/10.1002/anie.200806229