Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This article describes an implementation of Ehrenfest molecular dynamics based on TDDFT and Gaussian basis sets, optimized for hybrid QM–MM simulations in GPU. The present method makes use of the equations of motion proposed by Chen et al. (J Chem Phys 135:044126, 2011), which, at variance with previous formulations of the Ehrenfest dynamics, takes into account the movement of the localized basis functions, thus improving accuracy and energy conservation. This methodology is used to explore the evolution and the stability of excited state dynamics for two different constructions of the initial excited state, consisting in the linear response TDDFT S1 solution, and in the ground state density matrix where the HOMO–LUMO occupancies have been switched, which is a widespread approach to model photoexcitation in electron dynamics simulations. It is found that the second kind of starting state leads to a larger numerical noise and to a poorer stability of the dynamics, aside from “awakening” inner electronic modes that become manifest in the frequency spectrum, and which are absent if the dynamics departs from the linear response TDDFT density matrix. Then, the method is applied to investigate the photodissociation of the diazirine molecule, CH2N2, both in vacuum and in aqueous solution. Diazirine decomposes into carbene and molecular nitrogen upon irradiation with UV light, and for this reason it has been widely adopted to photolabel biomolecules through the insertion of carbenes in the macromolecular surface. Our simulations suggest that the quantum yield of the dissociative reaction experiences a decrease in solution with respect to the gas phase, that can be understood in terms of the vibrational relaxation facilitated by the solvent molecules. Besides, the present results indicate that the isomerization and dissociation mechanism occur fully on the S1 excited state. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

Registro:

Documento: Artículo
Título:QM–MM Ehrenfest dynamics from first principles: photodissociation of diazirine in aqueous solution
Autor:Ramírez, F.; Díaz Mirón, G.; González Lebrero, M.C.; Scherlis, D.A.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Primer Piso Pabellon 2, Ciudad Universitaria, C1428EHA, Argentina
Palabras clave:Nonadiabatic dynamics; Photochemistry; TDDFT
Año:2018
Volumen:137
Número:9
DOI: http://dx.doi.org/10.1007/s00214-018-2305-1
Título revista:Theoretical Chemistry Accounts
Título revista abreviado:Theor. Chem. Acc.
ISSN:1432881X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1432881X_v137_n9_p_Ramirez

Referencias:

  • Marx, D., Hutter, J., (2009) Ab initio molecular dynamics, , Cambridge University Press, Cambridge
  • Hack, M.D., Truhlar, D.G., Nonadiabatic trajectories at an exhibition (2000) J Phys Chem A, 104, p. 7917
  • Tully, J.C., Perspective: nonadiabatic dynamics theory (2012) J Chem Phys, 137, p. 22A301
  • Persico, M., Granucci, G., An overview of nonadiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces (2014) Theor Chem Acc, 133, p. 1526
  • de Carvalho, F.F., Bouduban, M.E.F., Curchod, B.F.E., Tavernelli, I., Nonadiabatic molecular dynamics based on trajectories (2014) Entropy, 16, p. 62
  • Curchod, B.F.E., Martínez, T.J., Ab initio nonadiabatic quantum molecular dynamics based on trajectories (2018) Chem Rev, 18, p. 3305
  • Wang, L., Akimov, A., Prezhdo, O.V., Recent progress in surface hopping: 2011–2015 (2016) J Phys Chem Lett, 7 (11), p. 2100
  • Klein, S., Bearpark, M.J., Smith, B.R., Robb, M.A., Olivucci, M., Bernardi, F., Mixed state ‘on the fly’ non-adiabatic dynamics: the role of the conical intersection topology (1998) Chem Phys Lett, 292, p. 259
  • Stier, W., Prezhdo, O.V., Non-adiabatic molecular dynamics simulation of ultrafast solar cell electron transfer (2003) J Mol Struct THEOCHEM, 630, p. 33. , WATOC ’02 Special Issue
  • Isborn, C.M., Li, X., Tully, J.C., Time-dependent density functional theory Ehrenfest dynamics: collisions between atomic oxygen and graphite clusters (2007) J Chem Phys, 126, p. 134307
  • Kawashita, Y., Nakatsukasa, T., Yabana, K., Time-dependent density-functional theory simulation for electron–ion dynamics in molecules under intense laser pulses (2009) J Phys Condens Matter, 21, p. 064222
  • Li, X., Tully, J.C., Schlegel, H.B., Frisch, M.J., Ab initio Ehrenfest dynamics (2005) J Chem Phys, 123, p. 084106
  • Liang, W., Chapman, C.T., Li, X., Efficient first-principles electronic dynamics (2011) J Chem Phys, 134, p. 184102
  • Wang, F., Yam, C.Y., Hu, L., Chen, G., Time-dependent density functional theory based Ehrenfest dynamics (2011) J Chem Phys, 135, p. 044126
  • Miyamoto, Y., Rubio, A., Application of the real-time time-dependent density functional theory to excited-state dynamics of molecules and 2D materials (2018) J Phys Soc Jpn, 87 (4), p. 041016
  • Lee, H., Miyamoto, Y., Tateyama, Y., Excited state carbene formation from UV irradiated diazomethane (2009) J Organ Chem, 74, p. 562
  • Liang, W., Isborn, C.M., Lindsay, A., Li, X., Smith, S.M., Levis, R.J., Time-dependent density functional theory calculations of Ehrenfest dynamics of laser controlled dissociation of no +: pulse length and sequential multiple single-photon processes (2010) J Phys Chem A, 114, p. 6201
  • Seraide, R., Bernal, M.A., Brunetto, G., de Giovannini, U., Rubio, A., TDDFT-based study on the proton–DNA collision (2017) J Phys Chem B, 121, p. 7276
  • Kohanoff, J., McAllister, M., Tribello, G.A., Gu, B., Interactions between low energy electrons and DNA: a perspective from first-principles simulations (2017) J Phys Condens Matter, 29, p. 383001
  • Duncan, W.R., Stier, W.M., Prezhdo, O.V., Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection across the Alizarin−TiO2 interface (2005) J Am Chem Soc, 127 (21), p. 7941
  • Miyamoto, Y., Tateyama, Y., Oyama, N., Ohno, T., Conservation of the pure adiabatic state in Ehrenfest dynamics of the photoisomerization of molecules (2015) Sci Rep, 5, p. 18220
  • Nitsche, M.A., Ferreria, M., Mocskos, E.E., Lebrero, M.C.G., GPU accelerated implementation of density functional theory for hybrid QM/MM simulations (2014) J Chem Theory Comput, 10 (3), p. 959
  • Morzan, U.N., Ramírez, F.F., Oviedo, M.B., Sánchez, C.G., Scherlis, D.A., Lebrero, M.C.G., Electron dynamics in complex environments with real-time time dependent density functional theory in a QM–MM framework (2014) J Chem Phys, 140 (16), p. 164105
  • The LIO Project, , https://github.com/MALBECC/LIO
  • Marcolongo, J.P., Morzan, U.N., Zeida, A., Scherlis, D.A., Olabe, J.A., Nitrosodisulfide [s2no]- (perthionitrite) is a true intermediate during the “cross-talk” of nitrosyl and sulfide (2016) Phys Chem Chem Phys, 18, p. 30047
  • Morzan, U.N., Ramrez, F.F., Lebrero, M.C.G., Scherlis, D.A., Electron transport in real time from first-principles (2017) J Chem Phys, 146 (4), p. 044110
  • Murale, D.P., Hong, S.C., Haque, M.M., Lee, J.S., Photo-affinity labeling (PAL) in chemical proteomics: a handy tool to investigate protein–protein interactions (PPIS) (2017) Proteome Sci, 15, p. 14
  • Gómez, G., Mundo, M., Craig, P., Delfino, J., Probing protein surface with a solvent mimetic carbene coupled to detection by mass spectrometry (2012) J Am Soc Mass Spectrom, 23 (1), p. 30
  • Gmez, G., Monti, J., Mundo, M., Delfino, J., Solvent mimicry with methylene carbene to probe protein topography (2015) Anal Chem, 87 (19), p. 10080
  • Platz, M.S., A perspective on physical organic chemistry (2014) J Organ Chem, 79, p. 2341
  • Marcolongo, J.P., Zeida, A., Semelak, J.A., Foglia, N.O., Morzan, U.N., Estrin, D.A., González Lebrero, M.C., Scherlis, D.A., Chemical reactivity and spectroscopy explored from QM/MM molecular dynamics simulations using the lio code (2018) Front Chem, 6, p. 70
  • Pearlman, D., Case, D., Caldwell, J., Ross, W., Cheatham, T., DeBolt, S., Amber, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules (1995) Comput Phys Commun, 91, p. 1
  • Magnus, W., On the exponential solution of differential equations for a linear operator (1954) Commun Pure Appl Math, 7, p. 649
  • Tannor, D.J., (2007) Introduction to quantum mechanics. A time-dependent perspective, , University Science Books, Herndon
  • Castro, A., Marques, M.A.L., Rubio, A., Propagators for the time-dependent Kohn–Sham equations (2004) J Chem Phys, 121 (8), p. 3425
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009) Gaussian09 Revision E.01, , Gaussian Inc. Wallingford CT
  • Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys Rev Lett, 77, p. 3865
  • Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1997) Phys Rev Lett, 78, p. 1396
  • Hehre, W.J., Ditchfield, R., Pople, J.A., Self consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules (1972) J Chem Phys, 56 (5), p. 2257
  • Tateyama, Y., Oyama, N., Ohno, T., Miyamoto, Y., Real-time propagation time-dependent density functional theory study on the ring-opening transformation of the photoexcited crystalline benzene (2006) J Chem Phys, 124 (12), p. 124507
  • Meng, S., Kaxiras, E., Real-time, local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations (2008) J Chem Phys, 129 (5), p. 054110
  • Modarelli, D.A., Platz, M.S., Interception of dimethylcarbene with pyridine: a laser flash photolysis study (1991) J Am Chem Soc, 113 (23), p. 8985
  • Seburg, R.A., McMahon, R.J., Photochemistry of matrix-isolated diazoethane and methyldiazirine: ethylidene trapping? (1992) J Am Chem Soc, 114 (18), p. 7183
  • Yamamoto, N., Bernardi, F., Bottoni, A., Olivucci, M., Robb, M.A., Wilsey, S., Mechanism of carbene formation from the excited states of diazirine and diazomethane: an MC-SCF study (1994) J Am Chem Soc, 116 (5), p. 2064
  • Bonneau, R., Liu, M.T., Quantum yield of formation of diazo compounds from the photolysis of diazirines (1996) J Am Chem Soc, 118 (30), p. 7229
  • Burdzinski, G., Réhault, J., Wang, J., Platz, M.S., A study of the photochemistry of diazo Meldrum's acid by ultrafast time-resolved spectroscopies (2008) J Phys Chem A, 112 (41), p. 10108
  • Zhang, Y., Burdzinski, G., Kubicki, J., Vyas, S., Hadad, C.M., Sliwa, M., Poizat, O., Platz, M.S., Study of the s1 excited state of para-methoxy-3-phenyl-3-methyl diazirine by ultrafast time resolved UV–Vis and IR spectroscopies and theory (2009) J Am Chem Soc, 131 (38), p. 13784
  • Bernardi, F., Olivucci, M., Robb, M.A., Vreven, T., Soto, J., An ab initio study of the photochemical decomposition of 3,3-dimethyldiazirine (2000) J Organ Chem, 65 (23), p. 7847

Citas:

---------- APA ----------
Ramírez, F., Díaz Mirón, G., González Lebrero, M.C. & Scherlis, D.A. (2018) . QM–MM Ehrenfest dynamics from first principles: photodissociation of diazirine in aqueous solution. Theoretical Chemistry Accounts, 137(9).
http://dx.doi.org/10.1007/s00214-018-2305-1
---------- CHICAGO ----------
Ramírez, F., Díaz Mirón, G., González Lebrero, M.C., Scherlis, D.A. "QM–MM Ehrenfest dynamics from first principles: photodissociation of diazirine in aqueous solution" . Theoretical Chemistry Accounts 137, no. 9 (2018).
http://dx.doi.org/10.1007/s00214-018-2305-1
---------- MLA ----------
Ramírez, F., Díaz Mirón, G., González Lebrero, M.C., Scherlis, D.A. "QM–MM Ehrenfest dynamics from first principles: photodissociation of diazirine in aqueous solution" . Theoretical Chemistry Accounts, vol. 137, no. 9, 2018.
http://dx.doi.org/10.1007/s00214-018-2305-1
---------- VANCOUVER ----------
Ramírez, F., Díaz Mirón, G., González Lebrero, M.C., Scherlis, D.A. QM–MM Ehrenfest dynamics from first principles: photodissociation of diazirine in aqueous solution. Theor. Chem. Acc. 2018;137(9).
http://dx.doi.org/10.1007/s00214-018-2305-1