Artículo

Alcoba, D.R.; Torre, A.; Lain, L.; Massaccesi, G.E.; Oña, O.B.; Ayers, P.W.; Van Raemdonck, M.; Bultinck, P.; Van Neck, D. "Performance of Shannon-entropy compacted N-electron wave functions for configuration interaction methods" (2016) Theoretical Chemistry Accounts. 135(6)
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The coefficients of full configuration interaction wave functions (FCI) for N-electron systems expanded in N-electron Slater determinants depend on the orthonormal one-particle basis chosen although the total energy remains invariant. Some bases result in more compact wave functions, i.e. result in fewer determinants with significant expansion coefficients. In this work, the Shannon entropy, as a measure of information content, is evaluated for such wave functions to examine whether there is a relationship between the FCI Shannon entropy of a given basis and the performance of that basis in truncated CI approaches. The results obtained for a set of randomly picked bases are compared to those obtained using the traditional canonical molecular orbitals, natural orbitals, seniority minimising orbitals and a basis that derives from direct minimisation of the Shannon entropy. FCI calculations for selected atomic and molecular systems clearly reflect the influence of the chosen basis. However, it is found that there is no direct relationship between the entropy computed for each basis and truncated CI energies. © 2016, Springer-Verlag Berlin Heidelberg.

Registro:

Documento: Artículo
Título:Performance of Shannon-entropy compacted N-electron wave functions for configuration interaction methods
Autor:Alcoba, D.R.; Torre, A.; Lain, L.; Massaccesi, G.E.; Oña, O.B.; Ayers, P.W.; Van Raemdonck, M.; Bultinck, P.; Van Neck, D.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, Bilbao, 48080, Spain
Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de la Plata, CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (s/n), Sucursal 4, CC 16, La Plata, 1900, Argentina
Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), Gent, 9000, Belgium
Center for Molecular Modeling, Ghent University, Technologiepark 903, Zwijnaarde, 9052, Belgium
Palabras clave:Configuration interaction; DOCI; Entropy; Seniority
Año:2016
Volumen:135
Número:6
DOI: http://dx.doi.org/10.1007/s00214-016-1905-x
Título revista:Theoretical Chemistry Accounts
Título revista abreviado:Theor. Chem. Acc.
ISSN:1432881X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1432881X_v135_n6_p_Alcoba

Referencias:

  • Ivanic, J., Ruedenberg, K., Identification of deadwood in configuration spaces through general direct configuration interaction (2001) Theor Chem Acc, 106 (5), pp. 339-351. , COI: 1:CAS:528:DC%2BD3MXovFOisr8%3D
  • Sherill, C.D., Schaefer, H.F., The configuration interaction method: advances in highly correlated approaches (1999) Adv Quantum Chem, 34, pp. 143-269
  • Evangelista, F.A., Adaptive multiconfigurational wave functions (2014) J Chem Phys, 140 (12), p. 124114
  • Knowles, P.J., Compressive sampling in configuration interaction wavefunctions (2015) Mol Phys, 113 (13-14), pp. 1655-1660. , COI: 1:CAS:528:DC%2BC2MXhs1aktrY%3D
  • Löwdin, P.O., Quantum theory of many-particle systems.1. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction (1955) Phys Rev, 97 (6), pp. 1474-1489
  • Coleman, A.J., Structure of fermion density matrices (1963) Rev Mod Phys, 35 (3), pp. 668-687
  • Bender, C.F., Davidson, E.R., A natural orbital based energy calculation for helium hydride and lithium hydride (1966) J Phys Chem, 70 (8), pp. 2675-2685. , COI: 1:CAS:528:DyaF28Xks1SrtLY%3D
  • Davidson, E.R., (1976) Reduced density matrices in quantum chemistry, , Academic Press, New York
  • Shavitt, I., The history and evolution of configuration interaction (1998) Mol Phys, 94 (1), pp. 3-17. , COI: 1:CAS:528:DyaK1cXjt12nsr8%3D
  • Kobe, D.H., Natural orbitals, divergences, and variational principles (1969) J Chem Phys, 50 (12), pp. 5183-5194. , COI: 1:CAS:528:DyaF1MXksVChsrY%3D
  • Shavitt, I., Rosenberg, B.J., Palalikit, S., Comparison of configuration interaction expansions based on different orbital transformations (1976) Int J Quantum Chem Symp, 10, pp. 33-46. , COI: 1:CAS:528:DyaE2sXovVGq
  • Lam, B., Schmidt, M.W., Ruedenberg, K., Intraatomic correlation correction in the FORS model (1985) J Phys Chem, 89 (11), pp. 2221-2235. , COI: 1:CAS:528:DyaL2MXitV2ls7k%3D
  • Schmidt, M.W., Gordon, M.S., The construction and interpretation of MCSCF wavefunctions (1998) Ann Rev Phys Chem, 49, pp. 233-266. , COI: 1:CAS:528:DyaK1cXmvVOrt78%3D
  • Bytautas, L., Ivanic, J., Ruedenberg, K., Split-localized orbitals can yield stronger configuration interaction convergence than natural orbitals (2003) J Chem Phys, 119 (16), pp. 8217-8224. , COI: 1:CAS:528:DC%2BD3sXotVKltLY%3D
  • Giesbertz, K.J.H., Are natural orbitals useful for generating an efficient expansion of the wave function? (2014) Chem Phys Lett, 591, pp. 220-226. , COI: 1:CAS:528:DC%2BC2cXksV2qtg%3D%3D
  • Alcoba, D.R., Torre, A., Lain, L., Massaccesi, G.E., Oña, O.B., Seniority number in spin-adapted spaces and compactness of configuration interaction wave functions (2013) J Chem Phys, 139 (8), p. 084103
  • Alcoba, D.R., Torre, A., Lain, L., Massaccesi, G.E., Oña, O.B., Configuration interaction wave functions: A seniority number approach (2014) J Chem Phys, 140 (23), p. 234103
  • Alcoba, D.R., Torre, A., Lain, L., Oña, O.B., Capuzzi, P., Van, R.M., Bultinck, P., Van, N.D., A hybrid configuration interaction treatment based on seniority number and excitation schemes (2014) J Chem Phys, 141 (24), p. 244118
  • Poelmans, W., Van Raemdonck, M., Verstichel, B., De Baerdemacker, S., Torre, A., Lain, L., Massaccesi, G.E., Van Neck, D., Variational optimization of the second-order density matrix corresponding to a seniority-zero configuration interaction wave function (2015) J Chem Theory Comput, 11 (9), pp. 4064-4076. , COI: 1:CAS:528:DC%2BC2MXhtFWqtLnK
  • Ring, P., Schuck, P., (1980) The nuclear many-body problem, , Springer, New York
  • Koltun, D.S., Eisenberg, J.M., (1988) Quantum mechanics of many degrees of freedom, , Wiley, New York
  • Alcoba, D.R., Bochicchio, R.C., Lain, L., Torre, A., On the definition of the effectively unpaired electron density matrix: a similarity measure approach (2006) Chem Phys Lett, 429 (1-3), pp. 286-288. , COI: 1:CAS:528:DC%2BD28Xps1CqtLk%3D
  • Karafiloglou, P., An efficient generalized polyelectron population analysis in orbital spaces: the hole-expansion methodology (2009) J Chem Phys, 130 (16), p. 164103. , COI: 1:STN:280:DC%2BD1Mzht1Orsg%3D%3D
  • Bytautas, L., Henderson, T.M., Jiménez-Hoyos, C.A., Ellis, J.K., Scuseria, G.E., Seniority and orbital symmetry as tools for establishing a full configuration interaction hierarchy (2011) J Chem Phys, 135 (4), p. 044119
  • Lain, L., Torre, A., Alcoba, D.R., Oña, O.B., Massaccesi, G.E., A study of the compactness of wave functions based on shannon entropy indices: a seniority number approach (2015) Theor Chem Acc, 134 (7), p. 85
  • Weinhold, F., Wilson, E.B., Reduced density matrices of atoms and molecules. I. The 2 matrix of double-occupancy, configuration-interaction wavefunctions for singlet states (1967) J Chem Phys, 46 (7), pp. 2752-2758. , COI: 1:CAS:528:DyaF2sXkt1Gls70%3D
  • Paldus, J., Jeziorski, B., Clifford-algebra and unitary-group formulations of the many-electron problem (1988) Theor Chim Acta, 73 (2-3), pp. 81-103. , COI: 1:CAS:528:DyaL1cXktFajtrc%3D
  • Lain, L., Torre, A., Karwowski, J., Valdemoro, C., Matrix-elements of the 3rd-order spin-adapted reduced hamiltonian (1988) Phys Rev A, 38 (6), pp. 2721-2728
  • Torre, A., Lain, L., Millan, J., Calculation of traces of p-order replacement operators over n-electron spin-adapted spaces (1993) Phys Rev A, 47 (2), pp. 923-928
  • Lain, L., Torre, A., Direct computation of traces of p-order replacement operators over n-electron spin-adapted spaces (1995) Phys Rev A, 52 (3), pp. 2446-2448. , COI: 1:CAS:528:DyaK2MXotVWhtLw%3D
  • Van Raemdonck, M., Alcoba, D.R., Poelmans, W., De Baerdemacker, S., Torre, A., Lain, L., Massaccesi, G.E., Bultinck, P., Polynomial scaling approximations and dynamic correlation corrections to doubly occupied configuration interaction wave functions (2015) J Chem Phys, 143 (10), p. 104106
  • Subotnik, J.E., Shao, Y.H., Liang, W.Z., Head-Gordon, M., An efficient method for calculating maxima of homogeneous functions of orthogonal matrices: Applications to localized occupied orbitals (2004) J Chem Phys, 121 (19), pp. 9220-9229. , COI: 1:CAS:528:DC%2BD2cXpsVClsLw%3D
  • Mathai, A.M., Tathie, P.N., (1988) Basic concepts in information theory and statistics, , Wiley, New York
  • Pfeiffer, P.E., (1978) Concepts of probability theory, , Dover, New York
  • Ivanov, V.V., Lyakh, D.I., Adamowicz, K., New indices for describing the multi-configurational nature of the coupled cluster wave function (2005) Mol Phys, 103, pp. 2131-2139. , COI: 1:CAS:528:DC%2BD2MXmtlSqsbg%3D
  • Collins, D.M., Entropy maximizations on electron-density (1993) Z Naturforschung A, 48 (1-2), pp. 68-74. , COI: 1:CAS:528:DyaK3sXisVWiur8%3D
  • Esquivel, R.O., Rodíguez, A.L., Sagar, R.P., Hô, M., Smith, V.H., Physical interpretation of information entropy: numerical evidence of the Collins conjecture (1996) Phys Rev A, 54 (1), pp. 259-265. , COI: 1:CAS:528:DyaK28Xkt1Oktb0%3D
  • Smith, G.T., Schmider, H.L., Smith, V.H., Electron correlation and the eigenvalues of the one-matrix (2002) Phys Rev A, 65 (3), p. 032508
  • Ziesche, P., Smith, V.H., Hô, M., Rudin, S.P., Gersdorf, P., Taut, M., The He isoelectronic series and the hooke’s law model: correlation measures and modifications of Collins’ conjecture (1999) J Chem Phys, 110 (13), pp. 6135-6142. , COI: 1:CAS:528:DyaK1MXitVCmt7s%3D
  • Ramírez, J.C., Soriano, C., Esquivel, R.O., Sagar, R.P., Hô, M., Smith, V.H., Jaynes information entropy of small molecules: numerical evidence of the Collins conjecture (1997) Phys Rev A, 56 (6), pp. 4477-4482
  • Esquivel, R.O., López-Rosa, S., Dehesa, J.S., Correlation energy as a measure of non-locality: quantum entanglement of helium-like systems (2015) EPL, 111 (4), p. 40009
  • López-Rosa, S., Esquivel, R.O., Plastino, A.R., Dehesa, J.S., Quantum entanglement of helium-like systems with varying-Z: compact state-of-the-art CI wave functions (2015) J Phys B At Mol Opt Phys, 48 (17), p. 175002
  • Delle Site, L., Shannon entropy and many-electron correlations: theoretical concepts, numerical results, and Collins conjecture (2015) Int J Quantum Chem, 115 (19), pp. 1396-1404. , COI: 1:CAS:528:DC%2BC2cXhvFymsLvE
  • Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., Optimization by simulated annealing (1983) Science, 220 (4598), pp. 671-680. , COI: 1:STN:280:DC%2BC3cvktFWjtw%3D%3D
  • de Andrade, M.D., Mundim, K.C., Malbouisson, L.A.C., Gsa algorithm applied to electronic structure: Hartree-Fock-GSA method (2005) Int J Quantum Chem, 103 (5), pp. 493-499
  • Raffenetti, R.C., Ruedenberg, K., Janssen, C.L., Schaefer, H.F., Efficient use of Jacobi rotations for orbital optimization and localization (1993) Theor Chim Acta, 86 (1-2), pp. 149-165. , COI: 1:CAS:528:DyaK3sXmtlChurw%3D
  • Johnson, R.D., Nist computational chemistry comparison and benchmark database (2006) URL:, , http://cccbdb.nist.gov/vibscalejust.asp
  • Roos, J.B., Larsson, M., Larson, A., Orel, A.E., Dissociative recombination of BeH + (2009) Phys Rev A, 80 (1), p. 012501
  • Chakrabarti, K., Tennyson, J., Electron collisions with the BeH + molecular ion in the R-matrix approach (2012) Eur Phys J D, 66 (1), p. 31
  • Frisch, M.J., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Fox, D., (2009) Gaussian, inc., Wallingford CT Gaussian09, revision d, p. 01
  • Turney, J.M., Simmonett, A.C., Parrish, R.M., Hohenstein, E.G., Evangelista, F.A., Fermann, J.T., Mintz, B.J., Crawford, T.D., PSI4: an open-source ab initio electronic structure program (2012) Wiley Interdiscip Rev Comput Mol Sci, 2 (4), pp. 556-565. , COI: 1:CAS:528:DC%2BC38XhtlWiu7bF
  • Löwdin, P.O., Shull, H., Natural orbitals in the quantum theory of 2-electron systems (1956) Phys Rev, 101 (6), pp. 1730-1739
  • Kong, L., Valeev, E.F., A novel interpretation of reduced density matrix and cumulant for electronic structure theories (2011) J Chem Phys, 134 (21), p. 214109

Citas:

---------- APA ----------
Alcoba, D.R., Torre, A., Lain, L., Massaccesi, G.E., Oña, O.B., Ayers, P.W., Van Raemdonck, M.,..., Van Neck, D. (2016) . Performance of Shannon-entropy compacted N-electron wave functions for configuration interaction methods. Theoretical Chemistry Accounts, 135(6).
http://dx.doi.org/10.1007/s00214-016-1905-x
---------- CHICAGO ----------
Alcoba, D.R., Torre, A., Lain, L., Massaccesi, G.E., Oña, O.B., Ayers, P.W., et al. "Performance of Shannon-entropy compacted N-electron wave functions for configuration interaction methods" . Theoretical Chemistry Accounts 135, no. 6 (2016).
http://dx.doi.org/10.1007/s00214-016-1905-x
---------- MLA ----------
Alcoba, D.R., Torre, A., Lain, L., Massaccesi, G.E., Oña, O.B., Ayers, P.W., et al. "Performance of Shannon-entropy compacted N-electron wave functions for configuration interaction methods" . Theoretical Chemistry Accounts, vol. 135, no. 6, 2016.
http://dx.doi.org/10.1007/s00214-016-1905-x
---------- VANCOUVER ----------
Alcoba, D.R., Torre, A., Lain, L., Massaccesi, G.E., Oña, O.B., Ayers, P.W., et al. Performance of Shannon-entropy compacted N-electron wave functions for configuration interaction methods. Theor. Chem. Acc. 2016;135(6).
http://dx.doi.org/10.1007/s00214-016-1905-x