Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This contribution presents results from applying two different charge models to take into account intermolecular interactions to model the solid-state effects on the 19 F NMR chemical-shift tensors. The density functional theory approach with the B3LYP gradient-corrected exchange correlation functional has been used because it includes electron correlation effects at a reasonable cost and is able to reproduce chemical shifts for a great variety of nuclei with reasonable accuracy. The results obtained with the charge models are compared with experimental data and with results obtained from employing the cluster model, which explicitly includes neighboring molecular fragments. The results show that the point-charge models offer similar accuracy to the cluster model with a lower cost.

Registro:

Documento: Artículo
Título:Solid-state nuclear magnetic resonance: Performance of point-charge distributions to model intermolecular effects in 19 F chemical shifts
Autor:Solís, D.; Ferraro, M.B.
Filiación:Departamento de Física, Ciudad Universitaria, Universidad de Buenos Aires, Pab. I, 1428 Buenos Aires, Argentina
Palabras clave:Charge models; Chemical-shift tensors; Solid-state effects
Año:2000
Volumen:104
Número:3-4
Página de inicio:323
Página de fin:326
DOI: http://dx.doi.org/10.1007/s002140000145
Título revista:Theoretical Chemistry Accounts
Título revista abreviado:Theor. Chem. Acc.
ISSN:1432881X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1432881X_v104_n3-4_p323_Solis

Referencias:

  • Facelli, J.C., (1996) Encyclopedia of Nuclear Magnetic Resonance, p. 1299. , Grant DM, Harris RK (eds) Wiley, London
  • De Dios, A.C., Oldfield, E., (1996) Solid State Nucl Magn Reson, 6, p. 101
  • Tosell, J.A., (1993) Nuclear Magnetic Shieldings and Molecular Structure, , Kluwer, Dordrecht
  • Haw, J.F., Nicholas, J.B., Xu, T., Beck, L.W., Ferguson, D.B., (1996) Acc Chem Res, 29, p. 259
  • Anderson-Altmann, K.L., Phung, C.G., Mavromoustakos, S., Zheng, Z., Facelli, J.C., Poulter, C.D., Grant, D.M., (1995) J Phys Chem, 99, p. 10454
  • Facelli, J.C., Pugmaire, R.J., Grant, D.M., (1996) J Am Chem Soc, 118, p. 5488
  • Solum, M.S., Anderson-Altmann, K.L., Strohmeyer, M., Surges, D., Zang, Y., Facelli, J.C., Grant, D.M., (1997) J Am Chem Soc, 119, p. 9804
  • Van Alsenoy, C., (1988) J Comput Chem, 9, p. 620
  • Van Alsenoy, C., Peeters, A., (1993) J Mol Struct (THEOCHEM), 286, p. 19
  • Peeters, A., Van Alsenoy, C., Lenstra, A.T.H., Geise, H.J., (1995) J Chem Phys, 103, p. 6608
  • Pearson, J.G., Lee, H., De Dios, A.C., Oldfield, E., (1995) J Am Chem Soc, 117, p. 9542
  • De Dios, A.C., Pearson, J.G., Oldfield, E., (1993) Science, 260, p. 1491
  • Szabo, A., Ostlund, N.S., (1989) Modern Quantum Chemistry, , McGraw-Hill, New York
  • Williams, D.E., Yan, J.M., (1988) Adv At Mol Phys, 23, p. 87
  • Ferraro, M.B., Repetto, V., Facelli, J.C., (1998) Solid State Nucl Magn Reson, 10, p. 185
  • Angyan, J.G., Chipot, C., (1994) Int J Quantum Chem, 52, p. 17
  • Chipot, C., (1992) GRID, , The GRID program is available from the authors upon request
  • Stefanovich, E.V., Truong, T.N., (1998) J Phys Chem B, 102, p. 3018
  • Truong, T.N., (1997) SCREEP, , The SCREEP program is available from the authors upon request
  • Cox, S.R., Williams, D.E., (1981) J Comput Chem, 2, p. 304
  • Pascual-Ahuin, J., Silla, E., Tuñón, I., (1994) J Comput Chem, 15, p. 1127
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G., Robb, M.A., Cheeseman, J.R., Pople, J.A., (1995) Gaussian, 94. , revision D.4. Gaussian, Pittsburgh, Pa
  • Cheeseman, J.R., Trucks, G.W., Keith, T.A., Firsch, M.J., (1996) J Chem Phys, 104, p. 5497
  • Becke, A.D., (1993) J Chem Phys, 98, p. 5648
  • London, F., (1937) J Phys Radium, 8, p. 397
  • Ditchfield, R., (1974) Mol Phys, 27, p. 789
  • Wolinski, K., Hinton, J.F., Pulay, P., (1990) J Am Chem Soc, 112, p. 8251
  • Helgaker, T., Jörgensen, P., (1991) J Chem Phys, 95, p. 2595. , and references therein
  • Krausse, J., Dunken, H., (1996) Acta Crystallogr, 20, p. 67
  • Kubota, M., Ohba, S., (1992) Acta Crystallogr B, 48, p. 849
  • Dunning, T.H., Hay, P.J., (1976) Modern Theoretical Chemistry, p. 1. , Schaeffer III HF (ed) Plenum, New York
  • Mason, J., (1987) Multinuclear NMR, , Plenum, New York
  • Raber, H., Mehring, M., (1977) Chem Phys, 26, p. 123

Citas:

---------- APA ----------
Solís, D. & Ferraro, M.B. (2000) . Solid-state nuclear magnetic resonance: Performance of point-charge distributions to model intermolecular effects in 19 F chemical shifts. Theoretical Chemistry Accounts, 104(3-4), 323-326.
http://dx.doi.org/10.1007/s002140000145
---------- CHICAGO ----------
Solís, D., Ferraro, M.B. "Solid-state nuclear magnetic resonance: Performance of point-charge distributions to model intermolecular effects in 19 F chemical shifts" . Theoretical Chemistry Accounts 104, no. 3-4 (2000) : 323-326.
http://dx.doi.org/10.1007/s002140000145
---------- MLA ----------
Solís, D., Ferraro, M.B. "Solid-state nuclear magnetic resonance: Performance of point-charge distributions to model intermolecular effects in 19 F chemical shifts" . Theoretical Chemistry Accounts, vol. 104, no. 3-4, 2000, pp. 323-326.
http://dx.doi.org/10.1007/s002140000145
---------- VANCOUVER ----------
Solís, D., Ferraro, M.B. Solid-state nuclear magnetic resonance: Performance of point-charge distributions to model intermolecular effects in 19 F chemical shifts. Theor. Chem. Acc. 2000;104(3-4):323-326.
http://dx.doi.org/10.1007/s002140000145