Artículo

Ropero-Vega, J.L.; Meléndez, A.M.; Pedraza-Avella, J.A.; Candal, R.J.; Niño-Gómez, M.E. "Mixed oxide semiconductors based on bismuth for photoelectrochemical applications" (2014) Journal of Solid State Electrochemistry. 18(7):1963-1971
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The structural and photoelectrochemical properties of mixed oxide semiconductor films of Bi-Nb-M-O (M = Al, Fe, Ga, In) were studied in order to explore their use as photoanodes in photoelectrochemical cells. These films were prepared on AISI/SAE 304 stainless steel plates by sol-gel dip-coating. The films were characterized by scanning electron microscopy - energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), and their photoelectrochemical properties were studied by open circuit potential (OCP) measurements, linear sweep voltammetry (LSV), and cyclic voltammetry (CV). SEM micrographs show homogeneous and rough films with agglomerates on the surface. EDS analyses show that the films are composed of Bi, Nb, and M, and the agglomerates are mainly composed of Bi. XRD analyses show a predominant crystalline phase of bismuth(III) oxide (Bi2O 3) and a secondary phase composed of Bi-M mixed oxides. It is noteworthy that there was no identified niobium-based crystalline phase. XPS results reveal that the films are composed by Bi(III), Nb(V), and M(III). CV results show that the electrochemical behavior is attributed only to the semiconductor films which indicate a good coating of the stainless steel support. OCP measurements show that all the films have n-type semiconductor properties and exhibited photoresponse to the visible light irradiation. LSV results show that the application of a potential higher than +0.1 V enhances the photocurrent which can be attributed to an improved charge carrier separation. The results indicate that these materials can be used in photoelectrochemical cells. © 2014 Springer-Verlag Berlin Heidelberg.

Registro:

Documento: Artículo
Título:Mixed oxide semiconductors based on bismuth for photoelectrochemical applications
Autor:Ropero-Vega, J.L.; Meléndez, A.M.; Pedraza-Avella, J.A.; Candal, R.J.; Niño-Gómez, M.E.
Filiación:Centro de Investigaciones en Catálisis - CICAT, Centro de Materiales y Nanociencias CMN, Universidad Industrial de Santander Sede Guatiguará, Calle 8N No. 3W-60, El Refugio, C.P. 681011, Piedecuesta Santander, Colombia
Grupo de Investigaciones en Minerales, Biohidrometalurgia y Ambiente GIMBA, Centro de Materiales y Nanociencias CMN, Universidad Industrial de Santander Sede Guatiguará, Calle 8N No. 3W-60, El Refugio, C.P. 681011, Piedecuesta Santander, Colombia
Instituto de Química Física de Materiales, Medio Ambiente y Energía INQUIMAE, Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2, C1428EHA Buenos Aires, Argentina
Palabras clave:Bismuth oxide; Dip-coating; Photoelectrochemistry; Sol-gel; Visible light radiation; Agglomeration; Coatings; Crystalline materials; Cyclic voltammetry; Electrochemistry; Energy dispersive spectroscopy; Photoelectrochemical cells; Scanning electron microscopy; Sol-gel process; Sol-gels; X ray diffraction; X ray photoelectron spectroscopy; Bismuth oxides; Dip coating; Mixed oxide semiconductors; Open circuit potential measurements; Photo-electrochemistry; Photoelectrochemical applications; Photoelectrochemical properties; Visible light; Oxide films
Año:2014
Volumen:18
Número:7
Página de inicio:1963
Página de fin:1971
DOI: http://dx.doi.org/10.1007/s10008-014-2420-4
Título revista:Journal of Solid State Electrochemistry
Título revista abreviado:J. Solid State Electrochem.
ISSN:14328488
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14328488_v18_n7_p1963_RoperoVega

Referencias:

  • Fujishima, A., Honda, K., Electrochemical photolysis of water at a semiconductor electrode (1972) Nature, 238, pp. 37-38. , 1:CAS:528:DyaE38XltVykurw%3D 10.1038/238037a0
  • Aruchamy, A., Aravamudan, G., Subba Rao, G.V., Semiconductor based photoelectrochemical cells for solar energy conversion - An overview (1982) Bull Mater Sci, 4, pp. 483-526. , 1:CAS:528:DyaL3sXnsFaqug%3D%3D 10.1007/BF02824960
  • Tryk, D.A., Fujishima, A., Honda, K., Recent topics in photoelectrochemistry: Achievements and future prospects (2000) Electrochim Acta, 45, pp. 2363-2376. , 1:CAS:528:DC%2BD3cXjvFymurw%3D 10.1016/S0013-4686(00)00337-6
  • Grätzel, M., Photoelectrochemical cells (2001) Nature, 414, pp. 338-344. , 10.1038/35104607
  • Zhang, H., Chen, G., Bahnemann, D.W., Photoelectrocatalytic materials for environmental applications (2009) J Mater Chem, 19, pp. 5089-5121. , 1:CAS:528:DC%2BD1MXosV2js7s%3D 10.1039/b821991e
  • Lianos, P., Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell (2011) J Hazard Mater, 185, pp. 575-590. , 1:CAS:528:DC%2BC3cXhsFCks7bN 10.1016/j.jhazmat.2010.10.083
  • Ochiai, T., Fujishima, A., Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification (2012) J Photochem Photobiol C, 13, pp. 247-262. , 1:CAS:528:DC%2BC38XhtVOqurbL 10.1016/j.jphotochemrev.2012.07.001
  • Li, Y., Zhang, J.Z., Hydrogen generation from photoelectrochemical water splitting based on nanomaterials (2009) Laser Photonics Rev, 4, pp. 517-528. , 10.1002/lpor.200910025
  • Navarro Rm, D., Photocatalytic water splitting under visible light (2009) Advances in Chemical Engineering. Elsevier, pp. 111-143
  • Georgieva, J., Valova, E., Armyanov, S., Philippidis, N., Poulios, I., Sotiropoulos, S., Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: A short review with emphasis to TiO2-WO3 photoanodes (2012) J Hazard Mater, 211-212, pp. 30-46. , 10.1016/j.jhazmat.2011.11.069
  • Riboni, F., Bettini, L.G., Bahnemann, D.W., Selli, E., WO3-TiO2 vs. TiO2 photocatalysts: Effect of the W precursor and amount on the photocatalytic activity of mixed oxides (2013) Catal Today, 209, pp. 28-34. , 1:CAS:528:DC%2BC3sXmt1Sqsb0%3D 10.1016/j.cattod.2013.01.008
  • Bian, Z., Zhu, J., Wang, S., Cao, Y., Qian, X., Li, H., Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase (2008) J Phys Chem C, 112, pp. 6258-6262. , 1:CAS:528:DC%2BD1cXjvVSiurc%3D 10.1021/jp800324t
  • Xu, J., Ao, Y., Fu, D., Yuan, C., Synthesis of Bi2O3-TiO2 composite film with high-photocatalytic activity under sunlight irradiation (2008) Appl Surf Sci, 255, pp. 2365-2369. , 1:CAS:528:DC%2BD1cXhsVChsLrI 10.1016/j.apsusc.2008.07.095
  • Zhao, X., Liu, H., Qu, J., Photoelectrocatalytic degradation of organic contaminants at Bi 2O3/TiO2 nanotube array electrode (2011) Appl Surf Sci, 257, pp. 4621-4624. , 1:CAS:528:DC%2BC3MXht1CltLc%3D 10.1016/j.apsusc.2010.12.099
  • Ohno, T., Miyamoto, Z., Nishijima, K., Kanemitsu, H., Xueyuan, F., Sensitization of photocatalytic activity of S- or N-doped TiO2 particles by adsorbing Fe3+ cations (2006) Appl Catal A, 302, pp. 62-68. , 1:CAS:528:DC%2BD28XitVaktbY%3D 10.1016/j.apcata.2005.12.010
  • Dholam, R., Patel, N., Adami, M., Miotello, A., Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst (2009) Int J Hydrog Energy, 34, pp. 5337-5346. , 1:CAS:528:DC%2BD1MXnvVait7s%3D 10.1016/j.ijhydene.2009.05.011
  • Di Paola, A., García-López, E., Marcì, G., Palmisano, L., A survey of photocatalytic materials for environmental remediation (2012) J Hazard Mater, 211-212, pp. 3-29. , 10.1016/j.jhazmat.2011.11.050
  • Zhang, L., Wang, W., Yang, J., Chen, Z., Zhang, W., Zhou, L., Liu, S., Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst (2006) Appl Catal, A, 308, pp. 105-110. , 1:CAS:528:DC%2BD28XlsFKqtL0%3D 10.1016/j.apcata.2006.04.016
  • Gao, F., Chen, X.Y., Yin, K.B., Dong, S., Ren, Z., Yuan, F., Yu, T., Liu, J., Visible-light photocatalytic properties of weak magnetic BiFeO 3 nanoparticles (2007) Adv Mater, 19, pp. 2889-2892. , 1:CAS:528:DC%2BD2sXht1eisr3E 10.1002/adma.200602377
  • Wang, W., Li, N., Chi, Y., Li, Y., Yan, W., Li, X., Shao, C., Electrospinning of magnetical bismuth ferrite nanofibers with photocatalytic activity (2013) Ceram Int, 39, pp. 3511-3518. , 1:CAS:528:DC%2BC38XhsFynu7jI 10.1016/j.ceramint.2012.10.175
  • Soltani, T., Entezari, M.H., Sono-synthesis of bismuth ferrite nanoparticles with high photocatalytic activity in degradation of rhodamine B under solar light irradiation (2013) Chem Eng J, 223, pp. 145-154. , 1:CAS:528:DC%2BC3sXnsFGrs7w%3D 10.1016/j.cej.2013.02.124
  • Wang, X., Lin, Y., Ding, X., Jiang, J., Enhanced visible-light-response photocatalytic activity of bismuth ferrite nanoparticles (2011) J Alloys Compd, 509, pp. 6585-6588. , 1:CAS:528:DC%2BC3MXlvVWrt7k%3D 10.1016/j.jallcom.2011.03.074
  • Fang, J., Ma, J., Sun, Y., Liu, Z., Gao, C., Synthesis of Bi3NbO7 nanoparticles with a hollow structure and their photocatalytic activity under visible light (2011) Solid State Sci, 13, pp. 1649-1653. , 1:CAS:528:DC%2BC3MXpsFKmurg%3D 10.1016/j.solidstatesciences.2011.06.017
  • Zhang, G., Yang, J., Zhang, S., Xiong, Q., Huang, B., Wang, J., Gong, W., Preparation of nanosized Bi3NbO7 and its visible-light photocatalytic property (2009) J Hazard Mater, 172, pp. 986-992. , 1:CAS:528:DC%2BD1MXhtlekt73M 10.1016/j.jhazmat.2009.07.089
  • Ai, Z., Ho, W., Lee, S., A stable single-crystal Bi3NbO7 nanoplates superstructure for effective visible-light-driven photocatalytic removal of nitric oxide (2012) Appl Surf Sci, 263, pp. 266-272. , 1:CAS:528:DC%2BC38XhsVCisLvK 10.1016/j.apsusc.2012.09.041
  • Wang, L., Wang, W., Shang, M., Sun, S., Yin, W., Ren, J., Zhou, J., Visible light responsive bismuth niobate photocatalyst: Enhanced contaminant degradation and hydrogen generation (2010) J Mater Chem, 20, pp. 8405-8410. , 1:CAS:528:DC%2BC3cXhtFOkt7zE 10.1039/c0jm01669a
  • Lin, X., Huang, F., Wang, W., Xia, Y., Wang, Y., Liu, M., Shi, J., Photocatalytic activity of a sillenite-type material Bi 25GaO39 (2008) Catal Commun, 9, pp. 572-576. , 1:CAS:528:DC%2BD1cXhvFyit7Y%3D 10.1016/j.catcom.2007.02.004
  • Zhang, C.Y., Sun, H.J., Chen, W., Zhou, J., Li, B., Wang, Y., Hydrothermal synthesis and photo-catalytic property of Bi 25FeO40 powders (2009) Applications of Ferroelectrics. IEEE, pp. 1-3
  • Zou, Z., Ye, J., Arakawa, H., Synthesis, magnetic and electrical transport properties of the Bi 2InNbO7 compound (2000) Solid State Commun, 116, pp. 259-263. , 1:CAS:528:DC%2BD3cXmsl2lsr8%3D 10.1016/S0038-1098(00)00330-6
  • Zou, Z., Ye, J., Arakawa, H., Preparation, structural and optical properties of a new class of compounds, Bi2MNbO7 (M = Al, Ga, In) (2001) Mater Sci Eng B, 79, pp. 83-85. , 10.1016/S0921-5107(00)00548-1
  • Zou, Z., Ye, J., Arakawa, H., Substitution effects of In3+ by Fe3+ on photocatalytic and structural properties of Bi2InNbO7 photocatalysts (2001) J Mol Catal A Chem, 168, pp. 289-297. , 1:CAS:528:DC%2BD3MXhs1Onsrk%3D 10.1016/S1381-1169(00)00545-8
  • Zou, Z., Ye, J., Arakawa, H., Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst (2003) Int J Hydrog Energy, 28, pp. 663-669. , 1:CAS:528:DC%2BD3sXhsVSrtb4%3D 10.1016/S0360-3199(02)00159-3
  • Zou, Z., Ye, J., Arakawa, H., Photocatalytic and photophysical properties of a novel series of solid photocatalysts, Bi2MNbO7 (M=Al3+, Ga 3+ and In3+) (2001) Chem Phys Lett, 333, pp. 57-62. , 1:CAS:528:DC%2BD3MXhtVOjtLY%3D 10.1016/S0009-2614(00)01348-8
  • Zou, Z., Ye, J., Arakawa, H., Substitution effects of in 3+ by Al 3+ and Ga 3+ on the photocatalytic and structural properties of the Bi 2InNbO7 photocatalyst (2001) Chem Mater, 13, pp. 1765-1769. , 1:CAS:528:DC%2BD3MXisV2qt7s%3D 10.1021/cm000687m
  • Garza-Tovar, L.L., Torres-Martínez, L.M., Rodríguez, D.B., Gómez, R., Del Angel, G., Photocatalytic degradation of methylene blue on Bi2MNbO 7 (M = Al, Fe, In, Sm) sol-gel catalysts (2006) J Mol Catal A Chem, 247, pp. 283-290. , 1:CAS:528:DC%2BD28XitVOhsr8%3D 10.1016/j.molcata.2005.11.053
  • Teixeira, Z., Otubo, L., Gouveia, R.F., Alves, O.L., Preparation and characterization of powders and thin films of Bi 2AlNbO7 and Bi2InNbO7 pyrochlore oxides (2010) Mater Chem Phys, 124, pp. 552-557. , 1:CAS:528:DC%2BC3cXhtFOqsL7K 10.1016/j.matchemphys.2010.07.009
  • Ropero-Vega, J.L., Rosas-Barrera, K.L., Pedraza-Avella, J.A., Laverde-Cataño, D.A., Pedraza-Rosas, J.E., Niño-Gómez, M.E., Photophysical and photocatalytic properties of Bi2MNbO 7 (M=Al, In, Ga, Fe) thin films prepared by dip-coating (2010) Mater Sci Eng B, 174, pp. 196-199. , 1:CAS:528:DC%2BC3cXhtFCkt7bI 10.1016/j.mseb.2010.03.019
  • Rosas-Barrera, K.L., Ropero-Vega, J.L., Pedraza-Avella, J.A., Niño-Gómez, M.E., Pedraza-Rosas, J.E., Laverde-Cataño, D.A., Photocatalytic degradation of methyl orange using Bi2MNbO 7 (M=Al, Fe, Ga, In) semiconductor films on stainless steel (2011) Catal Today, 166, pp. 135-139. , 1:CAS:528:DC%2BC3MXmtFaitrk%3D 10.1016/j.cattod.2010.08.008
  • Pedraza-Avella, J.A., Rosas-Barrera, K.L., Pedraza-Rosas, J.E., Laverde-Cataño, D.A., Photoelectrochemical hydrogen production from aqueous solution containing cyanide using Bi2MNbO7 (M=Al, Fe, Ga, In) films on stainless steel as photoanodes (2011) Top Catal, 54, pp. 244-249. , 1:CAS:528:DC%2BC3MXitFGgtL0%3D 10.1007/s11244-011-9655-4
  • Rosas-Barrera, K.L., Pedraza-Avella, J.A., Ballén-Gaitán, B.P., Cortés-Peña, J., Pedraza-Rosas, J.E., Laverde-Cataño, D.A., Photoelectrolytic hydrogen production using Bi2MNbO 7 (M=Al, Ga) semiconductor film electrodes prepared by dip-coating (2011) Mater Sci Eng B, 176, pp. 1359-1363. , 1:CAS:528:DC%2BC3MXhtF2htLjN 10.1016/j.mseb.2011.05.048
  • Sokolov, S., Ortel, E., Radnik, J., Kraehnert, R., Influence of steel composition and pre-treatment conditions on morphology and microstructure of TiO2 mesoporous layers produced by dip coating on steel substrates (2009) Thin Solid Films, 518, pp. 27-35. , 1:CAS:528:DC%2BD1MXhtV2it7zE 10.1016/j.tsf.2009.06.009
  • Iyyapushpam, S., Nishanthi, S.T., Pathinettam Padiyan, D., Photocatalytic degradation of methyl orange using α-Bi 2O3 prepared without surfactant (2013) J Alloys Compd, 563, pp. 104-107. , 1:CAS:528:DC%2BC3sXotVSrtrs%3D 10.1016/j.jallcom.2013.02.107
  • Weidong, H., Wei, Q., Xiaohong, W., Xianbo, D., Long, C., Zhaohua, J., The photocatalytic properties of bismuth oxide films prepared through the sol-gel method (2007) Thin Solid Films, 515, pp. 5362-5365. , 10.1016/j.tsf.2007.01.031
  • Brezesinski, K., Ostermann, R., Hartmann, P., Perlich, J., Brezesinski, T., Exceptional photocatalytic activity of ordered mesoporous β-Bi 2O3 thin films and electrospun nanofiber mats (2010) Chem Mater, 22, pp. 3079-3085. , 1:CAS:528:DC%2BC3cXlt1Wrs7g%3D 10.1021/cm903780m
  • Gurunathan, K., Photocatalytic hydrogen production using transition metal ions-doped γ-Bi2O3 semiconductor particles (2004) Int J Hydrog Energy, 29, pp. 933-940. , 1:CAS:528:DC%2BD2cXjt1anu7s%3D 10.1016/j.ijhydene.2003.04.001
  • Xia, J., Masaki, N., Jiang, K., Yanagida, S., Sputtered Nb2O5 as a novel blocking layer at conducting glass/TiO2 interfaces in dye-sensitized ionic liquid solar cells (2007) J Phys Chem C, 111, pp. 8092-8097. , 1:CAS:528:DC%2BD2sXltlWksr4%3D 10.1021/jp0707384
  • Innocenzi, P., Martucci, A., Armelao, L., Licoccia, S., Di Vona, M., Traversa, E., Sol-gel synthesis of β-Al2TiO5 thin films at low temperature (2000) Chem Mater, 12, pp. 517-524. , 1:CAS:528:DC%2BD3cXotlKqsA%3D%3D 10.1021/cm991134i
  • Fujii, T., De Groot, F.M.F., Sawatzky, G.A., Voogt, F., Hibma, T., Okada, K., In situ XPS analysis of various iron oxide films grown by NO 2-assisted molecular-beam epitaxy (1999) Phys Rev B, 59, pp. 3195-3202. , 1:CAS:528:DyaK1MXltlyjsw%3D%3D 10.1103/PhysRevB.59.3195
  • Valet, M., Hoffman, D.M., Synthesis of homoleptic gallium alkoxide complexes and the chemical vapor deposition of gallium oxide films (2001) Chem Mater, 13, pp. 2135-2143. , 1:CAS:528:DC%2BD3MXjs1Sgtrs%3D 10.1021/cm0014177
  • Poznyak, S.K., Kulak, A.I., Characterization and photoelectrochemical properties of nanocrystalline In2O3 film electrodes (2000) Electrochim Acta, 45, pp. 1595-1605. , 1:CAS:528:DC%2BD3cXntVOmsw%3D%3D 10.1016/S0013-4686(99)00319-9
  • Vivier, V., Régis, A., Sagon, G., Nedelec, J., Yu, L., Cachet-Vivier, C., Cyclic voltammetry study of bismuth oxide Bi2O3 powder by means of a cavity microelectrode coupled with Raman microspectrometry (2001) Electrochim Acta, 46, pp. 907-914. , 1:CAS:528:DC%2BD3MXkt1OhtA%3D%3D 10.1016/S0013-4686(00)00677-0
  • Aroutiounian, V.M., Arakelyan, V.M., Shahnazaryan, G.E., Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting (2005) Sol Energy, 78, pp. 581-592. , 1:CAS:528:DC%2BD2MXjsFaht70%3D 10.1016/j.solener.2004.02.002
  • Lei, C.-X., Zhou, H., Wang, C., Feng, Z.-D., Self-assembly of ordered mesoporous TiO2 thin films as photoanodes for cathodic protection of stainless steel (2013) Electrochim Acta, 87, pp. 245-249. , 1:CAS:528:DC%2BC3sXltlGqsg%3D%3D 10.1016/j.electacta.2012.09.089
  • Straka, L., Yagodzinskyy, Y., Kawakami, H., Romu, J., Ilola, R., Hänninen, H., Open-circuit potential as an indicator of damage of atomic layer deposited TiO2 on AISI 304 stainless steel (2008) Thin Solid Films, 517, pp. 641-647. , 1:CAS:528:DC%2BD1cXhtlGjurnK 10.1016/j.tsf.2008.07.028
  • Memming, R., Photoelectrochemical solar energy conversion (1988) Electrochemistry II, pp. 79-112. , E. Steckhan (eds) Springer Berlin 10.1007/BFb0018072
  • Xu, Y., Schoonen, M.A., The absolute energy positions of conduction and valence bands of selected semiconducting minerals (2000) Am Mineral, 85, pp. 543-556. , 1:CAS:528:DC%2BD3cXhvVaqsb8%3D
  • De Tacconi, N.R., Chenthamarakshan, C.R., Yogeeswaran, G., Watcharenwong, A., De Zoysa, R., Basit, N., Rajeshwar, K., Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: Influence of process variables on morphology and photoelectrochemical response (2006) J Phys Chem B, 110, pp. 25347-25355. , 10.1021/jp064527v
  • McShane, C.M., Choi, K.-S., Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth (2009) J Am Chem Soc, 131, pp. 2561-2569. , 1:CAS:528:DC%2BD1MXhsFWgtbs%3D 10.1021/ja806370s

Citas:

---------- APA ----------
Ropero-Vega, J.L., Meléndez, A.M., Pedraza-Avella, J.A., Candal, R.J. & Niño-Gómez, M.E. (2014) . Mixed oxide semiconductors based on bismuth for photoelectrochemical applications. Journal of Solid State Electrochemistry, 18(7), 1963-1971.
http://dx.doi.org/10.1007/s10008-014-2420-4
---------- CHICAGO ----------
Ropero-Vega, J.L., Meléndez, A.M., Pedraza-Avella, J.A., Candal, R.J., Niño-Gómez, M.E. "Mixed oxide semiconductors based on bismuth for photoelectrochemical applications" . Journal of Solid State Electrochemistry 18, no. 7 (2014) : 1963-1971.
http://dx.doi.org/10.1007/s10008-014-2420-4
---------- MLA ----------
Ropero-Vega, J.L., Meléndez, A.M., Pedraza-Avella, J.A., Candal, R.J., Niño-Gómez, M.E. "Mixed oxide semiconductors based on bismuth for photoelectrochemical applications" . Journal of Solid State Electrochemistry, vol. 18, no. 7, 2014, pp. 1963-1971.
http://dx.doi.org/10.1007/s10008-014-2420-4
---------- VANCOUVER ----------
Ropero-Vega, J.L., Meléndez, A.M., Pedraza-Avella, J.A., Candal, R.J., Niño-Gómez, M.E. Mixed oxide semiconductors based on bismuth for photoelectrochemical applications. J. Solid State Electrochem. 2014;18(7):1963-1971.
http://dx.doi.org/10.1007/s10008-014-2420-4