Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


The genome of the Antarctic bacterium Pseudomonas extremaustralis was analyzed searching for genes involved in environmental adaptability focusing on anaerobic metabolism, osmoregulation, cold adaptation, exopolysaccharide production and degradation of complex compounds. Experimental evidences demonstrated the functionality of several of these pathways, including arginine and pyruvate fermentation, alginate production and growth under cold conditions. Phylogenetic analysis along with genomic island prediction allowed the detection of genes with probable foreign origin such as those coding for acetate kinase, osmotic resistance and colanic acid biosynthesis. These findings suggest that in P. extremaustralis the horizontal transfer events and/or gene redundancy could play a key role in the survival under unfavorable conditions. Comparative genome analysis of these traits in other representative Pseudomonas species highlighted several similarities and differences with this extremophile bacterium. © 2014, Springer Japan.


Documento: Artículo
Título:Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance
Autor:Raiger Iustman, L.J.; Tribelli, P.M.; Ibarra, J.G.; Catone, M.V.; Solar Venero, E.C.; López, N.I.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Buenos Aires, C1428EGA, Argentina
IQUIBICEN, CONICET, Buenos Aires, Argentina
Palabras clave:Environmental adaptability; Exopolysaccharides; Genome analysis; Horizontal transfer; Microaerobic metabolism; Pseudomonas; Bacteria (microorganisms); Pseudomonas; acetate kinase; adenosine triphosphatase; alginic acid; arginine; colanic acid; coumaric acid; ferulic acid; polysaccharide; pyruvic acid derivative; trehalose; adaptation; Antarctica; bacterial genome; biology; chemistry; cold; DNA sequence; environment; fermentation; genetics; metabolism; osmosis; phenotype; phylogeny; physiology; Pseudomonas; Acetate Kinase; Adaptation, Biological; Adenosine Triphosphatases; Alginates; Antarctic Regions; Arginine; Cold Temperature; Computational Biology; Coumaric Acids; Environment; Fermentation; Genome, Bacterial; Osmosis; Phenotype; Phylogeny; Polysaccharides; Pseudomonas; Pyruvates; Sequence Analysis, DNA; Trehalose
Página de inicio:207
Página de fin:220
Título revista:Extremophiles
Título revista abreviado:Extremophiles
CAS:acetate kinase, 9027-42-3; adenosine triphosphatase, 37289-25-1, 9000-83-3; alginic acid, 28961-37-7, 29894-36-8, 9005-32-7, 9005-38-3; arginine, 1119-34-2, 15595-35-4, 7004-12-8, 74-79-3; coumaric acid, 25429-38-3; ferulic acid, 1135-24-6, 24276-84-4; trehalose, 99-20-7; Acetate Kinase; Adenosine Triphosphatases; Alginates; Arginine; colanic acid; Coumaric Acids; ferulic acid; Polysaccharides; Pyruvates; Trehalose


  • Arai, H., Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomonas aeruginosa (2011) Front Microbiol, 2, p. 103. , COI: 1:CAS:528:DC%2BC3MXptFyns78%3D, PID: 21833336
  • Arai, H., KodamaT, I.Y., Effect of nitrogen oxides on expression of the nir and nor genes for denitrification in Pseudomonas aeruginosa (1999) FEMS Microbiol Lett, 170, pp. 19-24. , COI: 1:CAS:528:DyaK1cXotFWisLo%3D, PID: 9919648
  • Archibald, R.M., Determination of citrulline and allantoin and demonstration of citrulline in blood plasma (1944) Biol Chem, 156, pp. 121-142. , COI: 1:CAS:528:DyaH2MXks1Ch
  • Auch, A.F., Von Jan, M., Klenk, H., Göker, M., Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison (2010) Stand Genomic Sci, 2, pp. 117-134. , PID: 21304684
  • Ayub, N., Pettinari, M.J., Ruiz, J., López, N.I., A polyhydroxybutyrate-producing Pseudomonas sp. isolated from antarctic environments with high stress resistance (2004) Curr Microbiol, 49, pp. 170-174. , COI: 1:CAS:528:DC%2BD2cXntFyqtLk%3D, PID: 15386099
  • Ayub, N., Pettinari, M.J., Méndez, B., López, N.I., The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island (2007) Plasmid, 58, pp. 240-248. , COI: 1:CAS:528:DC%2BD2sXht1WqtLnN, PID: 17629557
  • Ayub, N., Tribelli, P.M., López, N.I., Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation (2009) Extremophiles, 13, pp. 59-66. , COI: 1:CAS:528:DC%2BD1cXhsFCgsL7N, PID: 18931822
  • Boucher, J.C., Schurr, M.J., Yu, H., Rowen, D.W., Deretic, V., Pseudomonas aeruginosa in cystic fibrosis: role of mucC in the regulation of alginate production and stress sensitivity (1997) Microbiology, 143, pp. 3473-3480. , COI: 1:CAS:528:DyaK2sXnsFWmtLY%3D, PID: 9387225
  • Branda, S., Vik, S., Friedman, L., Kolter, R., Biofilms: the matrix revisited (2005) Trends Microbiol, 13, pp. 20-26. , COI: 1:CAS:528:DC%2BD2MXhvF2ntg%3D%3D, PID: 15639628
  • Carpenter, J.F., Prestrelski, S.J., Arakawa, T., Separation of freezing- and drying-induced denaturation of lyophilized proteins using stress-specific stabilization. I. Enzyme activity and calorimetric studies (1993) Arch Biochem Biophys, 30, pp. 3456-3464
  • Chang, W., van de Mortel, M., Nielsen, L., de Guzman, N., Li, X., Halverson, L., Alginate Production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions (2007) J Bacteriol, 189, pp. 8290-8299. , COI: 1:CAS:528:DC%2BD2sXhtlyht7vF, PID: 17601783
  • Chen, J., Lee, S.M., Mao, Y., Protective effect of exopolysaccharide colanic acid of Escherichia coli O157:H7 to osmotic and oxidative stress (2004) Int J Food Microbiol, 93, pp. 281-286. , COI: 1:CAS:528:DC%2BD2cXksVCjsr0%3D, PID: 15163584
  • Chitnis, C.E., Ohman, D.E., Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure (1993) Mol Microbiol, 8, pp. 583-593. , COI: 1:CAS:528:DyaK3sXks1Cks7Y%3D, PID: 7686997
  • D’Amico, S., Collins, T., Marx, J.C., Feller, G., Gerday, C., Psychrophilic microorganisms: challenges for life (2006) EMBO Rep, 7, pp. 385-389. , PID: 16585939
  • Dietrich, D., Illman, B., Crooks, C., Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava (2013) BMC Res Notes, 6, p. 219. , COI: 1:CAS:528:DC%2BC3sXhtFCntL3O, PID: 23734728
  • Ermolenko, D.N., Makhatadze, G.I., Bacterial cold-shock proteins (2002) Cell Mol Life Sci, 59, pp. 1902-1913. , COI: 1:CAS:528:DC%2BD38Xps1entbk%3D, PID: 12530521
  • Eschbach, M., Schreiber, K., Trunk, K., Buer, J., Jahn, D., Schobert, M., Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation (2004) J Bacteriol, 186, pp. 4596-4604. , COI: 1:CAS:528:DC%2BD2cXmtVems7g%3D, PID: 15231792
  • Feil, H., Feil, W.S., Chain, P., Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000 (2005) Proc Natl Acad Sci USA, 102, pp. 11064-11069. , COI: 1:CAS:528:DC%2BD2MXnvVWju7s%3D, PID: 16043691
  • Feller, G., Psychrophilic enzymes: from folding to function and biotechnology (2013) Scientifica, , PID: 24278781
  • Ferenci, T., Spira, B., Variation in stress responses within a bacterial species and the indirect costs of stress resistance (2007) Ann NY Acad Sci, 113, pp. 105-113
  • Fett, W.F., Osman, S.F., Fishman, M.L., Siebles, T.S., Alginate production by plant-pathogenic pseudomonads (1986) Appl Environ Microbiol, 52, pp. 466-473. , COI: 1:CAS:528:DyaL28XlsV2msr4%3D, PID: 16347146
  • Freeman, B.C., Chen, C., Yu, X., Nielsen, L., Peterson, K., Beattie, G.A., Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in epiphytic fitness and osmotolerance (2013) J Bacteriol, 19, pp. 4742-4752
  • Friedman, L., Kolter, R., Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix (2004) J Bacteriol, 186, pp. 4457-4465. , COI: 1:CAS:528:DC%2BD2cXmtVemsr8%3D, PID: 15231777
  • Ghafoor, A., Hay, D., Rehm, B.H.A., Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture (2011) Appl Environ Microbiol, 77, pp. 5238-5246. , COI: 1:CAS:528:DC%2BC3MXhtVKhsL3O, PID: 21666010
  • Govan, J.R., Fyfe, J.A., Jarman, T.R., Isolation of alginate-producing mutants of Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas mendocina (1981) J Gen Microbiol, 125, pp. 217-220. , COI: 1:STN:280:DyaL387ksVeruw%3D%3D, PID: 6801192
  • Graf, N., Altenbuchner, J., Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid (2014) Appl Microbiol Biotechnol, 98, pp. 137-149. , COI: 1:CAS:528:DC%2BC3sXhs1eqsL7F, PID: 24136472
  • Hay, I.D., Wang, Y., Moradali, M.F., Rehman, Z.U., Rehm, B.H.A., Genetics and regulation of bacterial alginate production (2014) Environ Microbiol, , PID: 24428834
  • Henry, S., Bru, D., Stres, B., Hallet, S., Philippot, L., Quantitative Detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils (2006) Appl Environ Microbiol, 72, pp. 5181-5189. , COI: 1:CAS:528:DC%2BD28XosVKmu7g%3D, PID: 16885263
  • Holloway, B.W., Genetic recombination in Pseudomonas aeruginosa (1955) J Gen Microbiol, 13, pp. 572-581. , COI: 1:STN:280:DyaG28%2FjtVKnuw%3D%3D, PID: 13278508
  • Horn, G., Hofweber, R., Kremer, W., Kalbitzer, H.R., Structure and function of bacterial cold shock proteins (2007) Cell Mol Life Sci, 64, pp. 1457-1470. , COI: 1:CAS:528:DC%2BD2sXot1Wguro%3D, PID: 17437059
  • Huisman, G., Wonink, E., Meima, R., Kazemier, B., Terpstra, P., Witholt, B., Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA (1992) J Biol Chem, 266, pp. 2191-2198
  • Irzik, K., Pfrotzschner, J., Goss, T., Ahnert, F., Haupt, M., Greie, J., The KdpC subunit of the Escherichia coli K+-transporting KdpB P-type ATPase acts as a catalytic chaperone (2011) FEBS J, 278, pp. 3041-3053. , COI: 1:CAS:528:DC%2BC3MXhtFSqtbvP, PID: 21711450
  • Jackson, K., Starkey, M., Kremer, S., Parsek, M.R., Wozniak, D.J., Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation (2004) J Bacteriol, 186, pp. 4466-4475. , COI: 1:CAS:528:DC%2BD2cXmtVemsrw%3D, PID: 15231778
  • Lai, S., Lai, M., Characterization and regulation of the osmolyte betaine synthesizing enzymes GSMT and SDMT from halophilic methanogen Methanohalophilus portucalensis (2011) PLoS One, 6, p. e25090. , COI: 1:CAS:528:DC%2BC3MXht12ns7bJ, PID: 21949863
  • Langille, M.G.I., Brinkman, F.S.L., IslandViewer: an integrated interface for computational identification and visualization of genomic islands (2009) Bioinformatics, 25, pp. 664-665. , COI: 1:CAS:528:DC%2BD1MXisFeksr4%3D, PID: 19151094
  • Lawrence, J.R., Chenier, M.R., Roy, R., Beaumier, D., Fortin, N., Swerhone, G., Neu, T.R., Greer, C.W., Microscale and molecular assessment of impacts of nickel, nutrients, and oxygen level on structure and function of river biofilm communities (2004) Appl Environ Microbiol, 70, pp. 4326-4339. , COI: 1:CAS:528:DC%2BD2cXmtFWnu78%3D, PID: 15240316
  • López, N.I., Pettinari, M.J., Stackebrandt, E., Tribelli, P.M., Pötter, M., Steinbüchel, A., Méndez, B., Pseudomonas extremaustralis sp. nov. a poly(3-hydroxybutyrate) producer isolated from an Antarctic environment (2009) Curr Microbiol, 59, pp. 514-519. , PID: 19688380
  • Mascher, F., Schnider-Keel, U., Haas, D., Défago, G., Moënne-Loccoz, Y., Persistence and cell culturability of biocontrol strain Pseudomonas fluorescens CHA0 under plough pan conditions in soil and influence of the anaerobic regulator gene anr (2003) Environ Microbiol, 5, pp. 103-115. , COI: 1:CAS:528:DC%2BD3sXhslWnu7g%3D, PID: 12558593
  • May, T.B., Chakrabarty, A.M., Isolation and assay of Pseudomonas aeruginosa alginate (1994) Methods Enzymol, 235, pp. 295-304. , COI: 1:CAS:528:DyaK2cXmslKisL0%3D, PID: 8057902
  • Mirleau, P., Philippot, L., Corberand, T., Lemanceau, P., Involvement of nitrate reductase and pyoverdine in competitiveness of Pseudomonas fluorescens strain C7R12 in soil (2001) Appl Environ Microbiol, 67, pp. 2627-2635. , COI: 1:CAS:528:DC%2BD3MXkt1Citrs%3D, PID: 11375173
  • Nelson, K.E., Weinel, C., Paulsen, I.T., Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440 (2002) Environ Microbiol, 4, pp. 799-808. , COI: 1:CAS:528:DC%2BD3sXkvVGrsw%3D%3D, PID: 12534463
  • Olvera, C., Goldberg, J.B., Sanchez, R., Soberon-Chavez, G., The Pseudomonas aeruginosa algC gene product participates in rhamnolipids biosynthesis (1999) FEMS Microbiol Lett, 179, pp. 85-90. , COI: 1:CAS:528:DyaK1MXlvVWksrs%3D, PID: 10481091
  • Ophir, T., Gutnick, D.L., A role for exopolysaccharides in the protection of microorganisms from desiccation (1994) Appl Environ Microbiol, 60, pp. 740-745. , COI: 1:CAS:528:DyaK2cXhsFylu78%3D, PID: 16349202
  • Overhage, J., Priefert, H., Steinbüchel, A., Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. strain HR199 (1999) Appl Environ Microbiol, 65, pp. 4837-4847. , COI: 1:CAS:528:DyaK1MXnt1WmtLg%3D, PID: 10543794
  • Paulsen, I.T., Press, C.M., Ravel, J., Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5 (2005) Nat Biotechnol, 23, pp. 873-878. , COI: 1:CAS:528:DC%2BD2MXlvFegs7o%3D, PID: 15980861
  • Petrova, O., Schurr, J.R., Sauer, K., Microcolony formation by the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate fermentation (2012) Mol Microbiol, 86, pp. 819-835. , COI: 1:CAS:528:DC%2BC3sXhtFyqs74%3D, PID: 22931250
  • Ramsey, D.M., Wozniak, D.J., Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis (2005) Mol Microbiol, 56, pp. 309-322. , COI: 1:CAS:528:DC%2BD2MXjsFWmt78%3D, PID: 15813726
  • Rodriguez Frigi, D., Tiedje, J.M., Coping with our cold planet (2008) Appl Environ Microbiol, 74, pp. 1677-1686
  • Roeûler, M., Mueller, V., Osmoadaptation in bacteria and archaea: common principles and differences (2001) Environ Microbiol, 3, pp. 743-754
  • Schreiber, F., Wunderlin, P., Udert, K.M., Wells, G.F., Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies (2012) Front Microbiol, 3, pp. 372-396. , PID: 23109930
  • Silby, M.W., Cerdeno-Tarraga, A., Vernikos, G.S., Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens (2009) Genome Biol, 10, p. R51. , PID: 19432983
  • Simon, C., Wiezer, A., Strittmatter, A.W., Rolf, D., Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome (2009) Appl Environ Microbiol, 75, p. 7519. , COI: 1:CAS:528:DC%2BC3cXis1ylsQ%3D%3D, PID: 19801459
  • Sohn, S.B., Kim, T.Y., Park, J.M., Lee, S.Y., In silico genome-scale metabolic analysis of seudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival (2010) Biotechnol J, 57, pp. 39-50
  • Song, W., Lin, X., Che, S., Identification of regulatory sequences and expression analysis of OmpR gene under different stress conditions in the Antarctic bacterium Psychrobacter sp (2013) G Curr Microbiol, 66, pp. 259-265. , COI: 1:CAS:528:DC%2BC3sXhsFGmtL4%3D
  • Stevenson, G., Andrianopoulos, K., Hobbs, M., Reeves, P.R., Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid (1996) J Bacteriol, 178, pp. 4885-4893. , COI: 1:CAS:528:DyaK28XkvFCmurk%3D, PID: 8759852
  • Stover, C.K., Pham, X.Q., Erwin, A.L., Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen (2000) Nature, 406, pp. 959-964. , COI: 1:CAS:528:DC%2BD3cXmtlKqsrY%3D, PID: 10984043
  • Su, S., Hassett, D., Anaerobic Pseudomonas aeruginosa and other obligately anaerobic bacterial biofilms growing in the thick airway mucus of chronically infected cystic fibrosis patients: an emerging paradigm or “Old Hat”? (2012) Expert Opin Ther Tar, 16, pp. 859-873. , COI: 1:CAS:528:DC%2BC38Xht1alsb3M
  • Sutherland, L., Cairney, J., Elmore, M., Booth, I., Higgins, C.F., Osmotic regulation of transcription: induction of the proU betaine transport gene is dependent on accumulation of intracellular potassium (1986) J Bacteriol, 168, pp. 805-814. , COI: 1:CAS:528:DyaL2sXhtFKk, PID: 3536861
  • Takamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: molecular Evolutionary Genetics Analysis using Maximum likelihood, Evolutionary distance, and Maximum Parsimony Methods (2011) Mol Biol Evol, 28, pp. 2731-2739
  • Thusitha, S., Gunasekera, S., Laszlo, N., Csonka, N., Paliy, O., Genome-wide transcriptional responses of Escherichia coli K-12 to continuous osmotic and heat stresses (2008) J Bacteriol, 190, pp. 3712-3720
  • Tribelli, P.M., López, N.I., Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions (2011) Extremophiles, 15, pp. 541-547. , COI: 1:CAS:528:DC%2BC3MXhtVKisbnE, PID: 21667094
  • Tribelli, P.M., Méndez, B.S., López, N.I., The oxygen sensitive global regulator, Anr, is involved in the biosynthesis of poly(3-hydroxybutyrate) in Pseudomonas extremaustralis (2010) J Mol Microbiol Biotechnol, 19, pp. 180-188. , COI: 1:CAS:528:DC%2BC3MXmsVGltQ%3D%3D, PID: 21042031
  • Tribelli, P.M., Di Martino, C., López, N.I., Raiger Iustman, L.J., Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis (2012) Biodegradation, 23, pp. 645-651. , COI: 1:CAS:528:DC%2BC38XhtFGlt77F, PID: 22302594
  • Tribelli, P.M., Raiger Iustman, L.J., Catone, M., Di Martino, C., Revale, S., Méndez, B., López, N.I., Genome sequence of the polyhydroxybutyrate producer Pseudomonas extremaustralis, a highly stress-resistant Antarctic bacterium (2012) J Bacteriol, 194, pp. 2381-2382. , COI: 1:CAS:528:DC%2BC38XmtFGrsb4%3D, PID: 22493195
  • Trujillo-Roldan, M.A., Moreno, S., Segura, D., Galindo, E., Espin, G., Alginate production by an Azotobacter vinelandii mutant unable to produce alginate lyase (2003) Appl Microbiol Biotechnol, 60, pp. 733-737. , COI: 1:CAS:528:DC%2BD3sXitlOqt7w%3D, PID: 12664154
  • Van Alst, N.E., Wellington, M., Clark, V.L., Haidaris, C., Iglewski, B., Nitrite reductase NirS is required for type III secretion system expression and virulence in the human monocyte cell line THP-1 by Pseudomonas aeruginosa (2009) Infect Immun, 77, pp. 4446-4454. , PID: 19651860
  • Vander Wauven, C., Pierard, A., Kley-Raymann, M., Haas, D., Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway (1984) J Bacteriol, 160, pp. 928-934. , COI: 1:CAS:528:DyaL2MXkt1Oisg%3D%3D, PID: 6438064
  • Waditee, R., Tanaka, Y., Aoki, K., Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica (2003) J Biol Chem, 278, pp. 4932-4942. , COI: 1:CAS:528:DC%2BD3sXhtVKlsbk%3D, PID: 12466265
  • Wargo, M., Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa (2013) Appl Environ Microbiol, 79, pp. 2112-2120. , COI: 1:CAS:528:DC%2BC3sXkvVOgtbo%3D, PID: 23354714
  • Wiedenbeck, J., Cohan, F., Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches (2011) FEMS Microbiol Rev, 35, pp. 957-976. , COI: 1:CAS:528:DC%2BC3MXhtVyjsr%2FN, PID: 21711367
  • Winsor, G., Lam, D., Fleming, L., Lo, R., Whiteside, M.D., Yu, N.Y., Hancock, R.E., Brinkman, F.S., Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes (2011) Nucleic Acids Res, 39, pp. 596-600
  • Yan, Y., Yang, J., Dou, Y., Nitrogen fixation island and rhizosphere competence traits in the genome of root associated Pseudomonas stutzeri A1501 (2008) Proc Natl Acad Sci USA, 105, pp. 7564-7569. , COI: 1:CAS:528:DC%2BD1cXmvFKksbk%3D, PID: 18495935


---------- APA ----------
Raiger Iustman, L.J., Tribelli, P.M., Ibarra, J.G., Catone, M.V., Solar Venero, E.C. & López, N.I. (2015) . Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance. Extremophiles, 19(1), 207-220.
---------- CHICAGO ----------
Raiger Iustman, L.J., Tribelli, P.M., Ibarra, J.G., Catone, M.V., Solar Venero, E.C., López, N.I. "Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance" . Extremophiles 19, no. 1 (2015) : 207-220.
---------- MLA ----------
Raiger Iustman, L.J., Tribelli, P.M., Ibarra, J.G., Catone, M.V., Solar Venero, E.C., López, N.I. "Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance" . Extremophiles, vol. 19, no. 1, 2015, pp. 207-220.
---------- VANCOUVER ----------
Raiger Iustman, L.J., Tribelli, P.M., Ibarra, J.G., Catone, M.V., Solar Venero, E.C., López, N.I. Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance. Extremophiles. 2015;19(1):207-220.