Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work, two archaea microorganisms (Haloferax volcanii and Natrialba magadii) used as biocatalyst at a microbial fuel cell (MFC) anode were evaluated. Both archaea are able to grow at high salt concentrations. By increasing the media conductivity, the internal resistance was diminished, improving the MFC's performance. Without any added redox mediator, maximum power (P max) and current at P max were 11.87/4.57/0.12 μW cm -2 and 49.67/22.03/0.59 μA cm -2 for H. volcanii, N. magadii and E. coli, respectively. When neutral red was used as the redox mediator, P max was 50.98 and 5.39 μW cm -2 for H. volcanii and N. magadii, respectively. In this paper, an archaea MFC is described and compared with other MFC systems; the high salt concentration assayed here, comparable with that used in Pt-catalyzed alkaline hydrogen fuel cells, will open new options when MFC scaling up is the objective necessary for practical applications. © 2011 Springer.

Registro:

Documento: Artículo
Título:Archaea-based microbial fuel cell operating at high ionic strength conditions
Autor:Abrevaya, X.C.; Sacco, N.; Mauas, P.J.D.; Cortón, E.
Filiación:Instituto de Astronomía y Física del Espacio (IAFE), University of Buenos Aires-CONICET, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
Department of Biochemistry, Facultad de Ciencias Exactas y Naturales y CONICET, University of Buenos Aires, Buenos Aires, Argentina
Palabras clave:Electricity generation; Escherichia coli; Haloferax volcanii; MFC; Nafion; Natrialba magadii; archaebacterium; article; bioenergy; electrochemistry; electrode; growth, development and aging; metabolism; osmolarity; Archaea; Bioelectric Energy Sources; Electrochemistry; Electrodes; Osmolar Concentration; Archaea; Escherichia coli; Haloferax volcanii; Natrialba magadii
Año:2011
Volumen:15
Número:6
Página de inicio:633
Página de fin:642
DOI: http://dx.doi.org/10.1007/s00792-011-0394-z
Título revista:Extremophiles
Título revista abreviado:Extremophiles
ISSN:14310651
CODEN:EXTRF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14310651_v15_n6_p633_Abrevaya

Referencias:

  • Akiba, T., Bennetto, H.P., Stirling, J.L., Tanaka, K., Electricity production from alkalophilic organisms (1987) Biotechnol Lett, 9, pp. 611-616
  • Allen, R.M., Benneto, H.P., Microbial fuel cells. Electricity production from carbohydrates (1993) Appl Biochem Biotechnol, 39, pp. 27-40
  • Barbir, F., (2005) PEM Fuel Cells: Theory and Practice, , Burlington: Elsevier Academic Press
  • Baron, D., Labelle, E., Coursolle, D., Gralnick, J.A., Bond, D.R., Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1 (2009) J Biol Chem, 284, pp. 28865-28873
  • Bennetto, H.P., Microbial fuel cells (1984) Life Chem Rep, 2, pp. 363-453
  • Bond, D.R., Holmes, D.E., Tender, L.M., Lovley, D.R., Electrode-reducing microorganisms that harvest energy from marine sediments (2002) Science, 295, pp. 483-485
  • Bullen, R.A., Arnot, T.C., Lakeman, J.B., Walsh, F.C., Biofuel cells and their development (2006) Biosens Bioelectron, 21, pp. 2015-2045
  • Burchardt, T., Gouérec, P., Sanchez-Cortezon, E., Karichev, Z., Miners, J.H., Alkaline fuel cells: contemporary advancement and limitations (2002) Fuel, 81, pp. 2151-2155
  • Cercado-Quezada, B., Delia, M.-L., Bergel, A., Treatment of dairy wastes with a microbial anode formed from garden compost (2010) J Appl Electrochem, 40, pp. 225-232
  • Davis, F., Higson, S.P.J., Biofuel cells. Recent advances and applications (2007) Biosens Bioelectron, 22, pp. 1224-1235
  • Debabov, V.G., Electricity from microorganisms (2008) Microbiology, 77, pp. 123-131
  • Gil, G.C., Chang, I.S., Kim, B.H., Kim, M., Jang, J.K., Park, H.S., Kim, H.J., Operational parameters affecting the performance of a mediator-less microbial fuel cell (2003) Biosens Bioelectron, 18, pp. 324-327
  • He, Z., Huang, Y., Manohar, A.K., Mansfeld, F., Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell (2008) Bioelectrochemistry, 74, pp. 78-82
  • Ieropoulos, I.A., Greenman, J., Melhuish, C., Hart, J., Comparative study of three types of microbial fuel cell (2005) Enzym Microb Technol, 37, pp. 238-245
  • Ishii, S., Watanabe, K., Yabuki, S., Logan, B.E., Sekiguchi, Y., Comparison of electrode reduction activities of Geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell (2008) Appl Environ Microbiol, 74, pp. 7348-7355
  • Jadhav, G.S., Ghangrekar, M.M., Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration (2009) Bioresour Technol, 100, pp. 717-723
  • Jang, J.K., Pham, T.H., Chang, I.S., Kang, K.H., Moon, H., Cho, K.S., Kim, B.H., Construction and operation of a novel mediator- and membrane-less microbial fuel cell (2004) Process Biochem, 39, pp. 1007-1012
  • Liu, H., Cheng, S., Logan, B.E., Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration (2005) Environ Sci Technol, 39, pp. 5488-5493
  • Logan, B.E., (2008) Microbial Fuel Cells, , NJ: Wiley
  • Lovley, D.R., The microbe electric: conversion of organic matter to electricity (2011) Environ Microbiol Rep, 3, pp. 27-35
  • Lowy, D.A., Tender, L.M., Zeikus, J.G., Park, D.H., Lovley, D.R., Harvesting energy from the marine sediment-water interface II: kinetic activity of anode materials (2006) Biosens Bioelectron, 21, pp. 2058-2063
  • Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., Gralnick, J.A., Bond, D.R., Shewanella secretes flavins that mediate extracellular electron transfer (2008) Proc Natl Acad Sci USA, 105, pp. 3968-3973
  • McKinlay, J.B., Zeikus, J.G., Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli (2004) Appl Environ Microbiol, 70, pp. 3467-3474
  • Miller, L.G., Oremland, R.S., Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes (2008) Extremophiles, 12, pp. 837-848
  • Min, B., Cheng, S., Logan, B.E., Electricity generation using membrane and salt bridge microbial fuel cells (2005) Water Res, 39, pp. 1675-1686
  • Oh, S.-E., Logan, B.E., Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells (2006) Appl Microbiol Biotechnol, 70, pp. 162-169
  • Osman, M.H., Shah, A.A., Walsh, F.C., Recent progress and continuing challenges in bio-fuel cells. Part II: microbial (2010) Biosens Bioelect, 26, pp. 953-963
  • Park, D.H., Zeikus, J.G., Electricity generation in microbial fuel cells (2000) Appl Environ Microbiol, 66, pp. 1292-1297
  • Park, D.H., Zeikus, J.G., Improved fuel cell and electrode designs for producing electricity from microbial degradation (2003) Biotechnol Bioeng, 81, pp. 348-355
  • Potter, M.C., Electrical effects accompanying the decomposition of organic compounds (1911) Proc Roy Soc Lond, B84, pp. 260-276
  • Rabaey, K., Verstraete, W., Microbial fuel cells: novel biotechnology for energy generation (2005) Trends Biotechnol, 23, pp. 291-298
  • Rabaey, K., Boon, N., Höfte, M., Verstraete, W., Microbial phenazine production enhances electron transfer in biofuel cells (2005) Environ Sci Technol, 39, pp. 3401-3408
  • Reimers, C.E., Tender, L.M., Fertig, S., Wang, W., Harvesting energy from the marine sediment-water interface (2001) Environ Sci Technol, 35, pp. 192-195
  • Roslashnnekleiv, M., Liaaen-Jensen, S., Bacterial carotenoids 53, C50-carotenoids 23; carotenoids of Haloferax volcanii versus other halophilic bacteria (1995) Biochem Syst Ecol, 23, pp. 627-634
  • Tender, L.M., Reimers, C.E., Stecher, H.A., Holmes, D.E., Bond, D.R., Lowy, D.A., Pilobelo, K., Lovley, D.R., Harnessing microbially generated power on the seafloor (2002) Nat Biotechnol, 20, pp. 821-825
  • Tindall, B.J., Ross, H.N.M., Grant, W.D., Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 15 (1984) Int J Syst Bacteriol, 34, pp. 355-357
  • Veer Raghavulu, S., Venkata Mohan, S., Kannaiah Goud, R., Sarma, P.N., Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes (2009) Electrochem Commun, 11, pp. 371-375
  • von Canstein, H., Ogawa, J., Shimizu, S., Lloyd, J.R., Secretion of flavins by Shewanella species and their role in extracellular electron transfer (2007) Appl Environ Microbiol, 74, pp. 615-623
  • Wendoloski, D., Ferrer, C., Dyall-Smith, M.L., A new simvastatin (mevinolin)-resistance marker from Haloarcula hispanica and a new Haloferax volcanii strain cured of plasmid pHV2 (2001) Microbiology, 147, pp. 949-954
  • Wraight, C.A., Chance and design-proton transfer in water, channels and bioenergetic proteins (2006) Biochim Biophys Acta, 1757, pp. 886-912

Citas:

---------- APA ----------
Abrevaya, X.C., Sacco, N., Mauas, P.J.D. & Cortón, E. (2011) . Archaea-based microbial fuel cell operating at high ionic strength conditions. Extremophiles, 15(6), 633-642.
http://dx.doi.org/10.1007/s00792-011-0394-z
---------- CHICAGO ----------
Abrevaya, X.C., Sacco, N., Mauas, P.J.D., Cortón, E. "Archaea-based microbial fuel cell operating at high ionic strength conditions" . Extremophiles 15, no. 6 (2011) : 633-642.
http://dx.doi.org/10.1007/s00792-011-0394-z
---------- MLA ----------
Abrevaya, X.C., Sacco, N., Mauas, P.J.D., Cortón, E. "Archaea-based microbial fuel cell operating at high ionic strength conditions" . Extremophiles, vol. 15, no. 6, 2011, pp. 633-642.
http://dx.doi.org/10.1007/s00792-011-0394-z
---------- VANCOUVER ----------
Abrevaya, X.C., Sacco, N., Mauas, P.J.D., Cortón, E. Archaea-based microbial fuel cell operating at high ionic strength conditions. Extremophiles. 2011;15(6):633-642.
http://dx.doi.org/10.1007/s00792-011-0394-z