Abstract:
We study nonlocal diffusion models of the form (γ(u))_t (t, x) = \\int_{\\Omega} J(x-y)(u(t, y) - u(t, x))\\, dy. Here Ω is a bounded smooth domain andγ is a maximal monotone graph in {{R}}2. This is a nonlocal diffusion problem analogous with the usual Laplacian with Neumann boundary conditions. We prove existence and uniqueness of solutions with initial conditions in L 1 (Ω). Moreover, when γ is a continuous function we find the asymptotic behaviour of the solutions, they converge as t → ∞ to the mean value of the initial condition. © 2007 Birkhaueser.
Registro:
Documento: |
Artículo
|
Título: | The Neumann problem for nonlocal nonlinear diffusion equations |
Autor: | Andreu, F.; Mazón, J.M.; Rossi, J.D.; Toledo, J. |
Filiación: | Departamento de Matemática Aplicada, Universitat de València, Valencia, Spain Departamento de Análisis Matemático, Universitat de València, Valencia, Spain Departamento de Matemática, FCEyN UBA (1428), Buenos Aires, Argentina
|
Palabras clave: | Asymptotic behaviour; Neumann boundary conditions; Nonlocal diffusion |
Año: | 2008
|
Volumen: | 8
|
Número: | 1
|
Página de inicio: | 189
|
Página de fin: | 215
|
DOI: |
http://dx.doi.org/10.1007/s00028-007-0377-9 |
Título revista: | Journal of Evolution Equations
|
Título revista abreviado: | J. Evol. Equ.
|
ISSN: | 14243199
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14243199_v8_n1_p189_Andreu |
Referencias:
- ANDREU, F., IGBIDA, N., MAZÓN, J.M., TOLEDO, J., A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions (2006) Interfaces Free Bound, 8, pp. 447-479
- BATES, P., CHMAJ, A., An integrodifferential model for phase transitions: Stationary solutions in higher dimensions (1999) J. Statistical Phys, 95, pp. 1119-1139
- BATES, P., CHMAJ, A., A discrete convolution model for phase transitions (1999) Arch. Rat. Mech. Anal, 150, pp. 281-305
- BATES, P., FIFE, P., REN, X., WANG, X., Travelling waves in a convolution model for phase transitions (1997) Arch. Rat. Mech. Anal, 138, pp. 105-136
- BÉNILAN, P., (1972) Equations d'évolution dans un espace de Banach quelconque et applications, , Thesis, Univ. Orsay
- BÉNILAN, P., CRANDALL, M.G., Completely accretive operators (1989) Lecture Notes in Pure and Appl. Math, 135, pp. 41-75. , Semigroup theory and evolution equations Delft, of, Dekker, New York
- BÉNILAN, P., CRANDALL, M.G., PAZY, A., Evolution Equations Governed by Accretive Operators, , Book to appear
- BREZIS, H., Problèmes Unilatéraux (1992) J. Math. Pures et Appl, 51, pp. 1-169
- CARRILLO, C., FIFE, P., Spatial effects in discrete generation population models (2005) J. Math. Biol, 50, pp. 161-188
- CHASSEIGNE, E., CHAVES, M., ROSSI, J.D., Asymptotic behaviour for nonlocal diffusion equations (2006) J. Math. Pures Appl, 86, pp. 271-291
- CHEN, X., Existence, uniqueness and asymptotic stability of travelling waves in nonlocal evolution equations (1997) Adv. Differential Equations, 2, pp. 125-160
- CORTAZAR, C., ELGUETA, M., ROSSI, J.D., WOLANSKI, N., Boundary fluxes for non-local diffusion (2007) Journal of Differential Equations, 234, pp. 360-390
- CORTAZAR, C., ELGUETA, M., ROSSI, J.D., WOLANSKI, N., HOW to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems Arch. Rat. Mech. Anal, , To appear in
- CRANDALL, M.G., An introduction to evolution governed by accretive operators (1974) Dynamical systems (Proc. Internat. Sympos., Brown Univ, 1, pp. 131-165. , Providence, R.I, Academic Press, New York
- DAFERMOS, C. M., Asymptotic Behavior of Solutions of Evolution Equations, In Nonlinear Evolution Equations (M. G. Crandall, eds.) Academic Press, 1978, pp.103-123; FIFE, P., (2003) Some nonclassical trends in parabolic and parabolic-like evolutions, Trends in nonlinear analysis, pp. 153-191. , Springer, Berlin
- FIFE, P., WANG, X., A convolution model for interfacial motion: The generation and propagation of internal layers in higher space dimensions (1998) Adv. Differential Equations, 3, pp. 85-110
- SILVESTRE, L., Hölder estimates for solutions of integro differential equations like the fractional laplace (2006) Indiana Univ. Math. J, 55, pp. 1155-1174
- WANG, X., Metaestability and stability of patterns in a convolution model for phase transitions (2002) J. Differential Equations, 183, pp. 434-461
- ZHANG, L., Existence, uniqueness and exponential stability of traveling wave solutions of some, integral differential equations arising from neuronal networks (2004) J. Differential Equations, 197, pp. 162-196
Citas:
---------- APA ----------
Andreu, F., Mazón, J.M., Rossi, J.D. & Toledo, J.
(2008)
. The Neumann problem for nonlocal nonlinear diffusion equations. Journal of Evolution Equations, 8(1), 189-215.
http://dx.doi.org/10.1007/s00028-007-0377-9---------- CHICAGO ----------
Andreu, F., Mazón, J.M., Rossi, J.D., Toledo, J.
"The Neumann problem for nonlocal nonlinear diffusion equations"
. Journal of Evolution Equations 8, no. 1
(2008) : 189-215.
http://dx.doi.org/10.1007/s00028-007-0377-9---------- MLA ----------
Andreu, F., Mazón, J.M., Rossi, J.D., Toledo, J.
"The Neumann problem for nonlocal nonlinear diffusion equations"
. Journal of Evolution Equations, vol. 8, no. 1, 2008, pp. 189-215.
http://dx.doi.org/10.1007/s00028-007-0377-9---------- VANCOUVER ----------
Andreu, F., Mazón, J.M., Rossi, J.D., Toledo, J. The Neumann problem for nonlocal nonlinear diffusion equations. J. Evol. Equ. 2008;8(1):189-215.
http://dx.doi.org/10.1007/s00028-007-0377-9