Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This paper presents a new method to calculate solid-state effects on NMR chemical shifts. Using full crystal potentials, this new method (CPPCh) eliminates the need to arbitrarily select the point charges that are included in the calculations of the NMR chemical shieldings to take into account intermolecular effects. By eliminating the arbitrary selection of the point charges, the method provides a mechanism to systematically improve the simulation of intermolecular effects on chemical shielding calculations. This new method has been applied to the calculation of the 31 P NMR chemical shifts tensors in P 4 S 3 . The shielding calculations were done using the DFT approach with the BLYP gradient corrected exchange correlation functional. This method was selected to calculate the 31 P chemical shifts because it includes electron correlation effects at a reasonable cost.

Registro:

Documento: Artículo
Título:Modeling NMR chemical shifts: Crystal potential derived point charge (CPPCh) model to calculate solid state effects on 31 P chemical shifts tensors
Autor:Schneider, D.M.; Caputo, M.C.; Ferraro, M.B.; Facelli, J.C.
Filiación:Departamento de Física, Universidad de Buenos Aires, Ciudad Universitaria, (1428) Buenos Aires, Argentina
Ctr. for High Performance Computing, University of Utah, Salt Lake City, UT 84112, United States
Palabras clave:Charge point models; Chemical shielding calculations; NMR solid state effects; analytic method; article; calculation; correlation coefficient; crystal structure; density functional theory; electron transport; elimination reaction; molecular interaction; molecular mechanics; nuclear magnetic resonance spectroscopy; phosphorus nuclear magnetic resonance; solid state
Año:2000
Volumen:1
Número:4
Página de inicio:75
Página de fin:83
DOI: http://dx.doi.org/10.3390/ijms1040075
Título revista:International Journal of Molecular Sciences
Título revista abreviado:Int. J. Mol. Sci.
ISSN:14220067
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14220067_v1_n4_p75_Schneider

Referencias:

  • Schaefer, J., Stejskal, E.O., High-Resolution 13C NMR in solid polymers (1970) Topics in Carbon-13 NMR Spectroscoy, pp. 284-306. , Ed. G. C. Levy, Willey; New York
  • (1999) Modeling NMR Chemical Shifts: Gaining Insights into Structure and Environment, 732. , American Chemical Society Symposium Series, Eds. J. C. Facelli and A. C. de Dios, Oxford University Press
  • Facelli, J.C., Grant, D.M., Determination of Molecular Symmetry in crystalline naphthalene using solid state NMR (1993) Nature, 365, pp. 325-327
  • De Dios, A.C., Oldfield, E., Recent progress in understanding chemical shifts (1996) NMR Solid State, 6, pp. 101-125
  • De Dios, A.C., Pearson, J.G., Oldfield, E., Secondary and Tertiary structural effects on Protein NMR chemical shifts: An ab-initio approach (1993) Science, 260, pp. 1491-1496
  • De Dios, A.C., Oldfield, E., Methods for computing nuclear magnetic resonance chemical shielding in large systems. Multiple cluster and charge field approaches (1993) Chem. Phys. Lett., 205, pp. 108-116
  • De Dios, A.C., Oldfield, E., Ab-Initio Study of the Effects of Torsion Angles on Carbon-13 Nuclear Magnetic Resonance chemical shielding in N-Formyl-L-alanine amide, N-Formyl-L-valine Amide and some simple compounds: Application to NMR Spectroscopy (1994) J. Am. Chem. Soc., 116, pp. 5307-5314
  • Mauri, F., Pfrommer, B., Louie, S.G., Ab-Initio Theory of NMR chemical shifts in Solids and Liquids (1996) Phys. Rev. Lett., 77, pp. 5300-5303
  • Gregor, T., Mauri, F., Car, R., A comparison of methods for calculation of NMR chemical shifts (1999) J. Chem. Phys., 111, pp. 1815-1822
  • Hohenberg, P., Khon, W., Inhomogeneous electron gas (1964) Phys. Rev., 136, pp. B864-B871
  • Khon, W., Sham, L.J., Self-consistent Equations Including Exchange and Correlation Effects (1965) Phys. Rev., 140, pp. A1133-A1138
  • Slater, J.C., Quantum theory of molecular solids (1974) The Self-Consistent Field for Molecules and Solids, 4. , Ed. Mc Graw-Hill: New York
  • Cheesman, J., Trucks, R., Keith, G.W.T.A., Frisch, M.J., A comparison of models for calculating nuclear magnetic resonance shielding tensors (1996) J. Chem. Phys., 104, pp. 5497-5509
  • Ferraro, M.B., Repetto, V., Facelli, J.C., Modeling NMR chemical shifts: A comparison of charge models for solid state effects on 15 N chemical shifts tensors (1998) NMR Solid State, 10, pp. 185-189
  • Dovesi, R., Saunders, V.R., Roetti, C., Causà, M., Harrison, N.M., Orlando, R., Aprá, E., (1999) CRYSTAL98, , University of Torino, Torino
  • Corbridge, D.E.C., (1980) Phosphorous: An Outline of Its Chemistry, Biochemistry and Technology; Second Ed., , Elsevier, Amsterdam
  • Chipot, C., Maigret, B., Rivail, J.L., Scheraga, H.J., Modeling Amino Acid Side chains. 1. Determination of net atomic charges from ab-initio Self-Consistent-Field Molecular Electrostatic Properties (1992) Phys. Chem., 96, pp. 10276-10284
  • Jackson, J.D., (1975) 'Classical Electrodynamics', 2nd Edition, , John Willey & Sons, New York
  • Landau, L., Lifshitz, E., (1966) Théorie du Champs, , Moscow
  • Pascual-Ahuir, J.L., Silla, E., GEPOL An Improved Description of Molecular Surfaces. I. Building the spherical surface set (1990) J. Comp. Chem., 11, pp. 1047-1060
  • Chipot, C., (1992) GRID: A Fortran Program Performing Charge Fitting to Molecular Electrostatic Potentials for Fields, , available from the author
  • Derenzo, S.E., Klinterberg, M.K., Weber, M.J., Determinig point charges arrays that produce accurate ionic crystal fields for atomic cluster calculations (2000) J. Chem. Phys., 112, pp. 2074-2081
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Pople, J.A., (1998) Gaussian 98, Revision A.7, , Gaussian, Inc., Pittsburgh PA
  • Lee, C., Yang, W., Parr, G., Development of the Colle-Salvetti correlation-energy formula (1988) Phys. Rev. B, 37, pp. 785-789
  • Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior (1988) Phys. Rev. A, 38, pp. 3098-3100
  • Dunning, T.H., Hay, P.J., (1976) Modern Theoretical Chemistry, p. 1. , H. F. Schaeffer III (Ed.), Plenum, New York
  • Wolinski, K., Hinton, J.F., Pulay, P., Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR chemical shifts calculations (1990) J. Am. Chem. Soc., 112, pp. 8251-8260
  • Ditchfield, R., Self Consistent perturbation theory of diamagnetism. I. Gauge-Invariant LCAO method for NMR chemical shifts (1974) Mol. Phys., 27, pp. 789-807
  • London, F., Thèorie Quantique des courants interatomiques dans les combinaisons aromatiques (1937) J. Phys. Radium, 8, pp. 397-409
  • Hehre, W.J., Random, L., Schleyer, P.R., Pople, J.A., (1986) Ab Initio Molecular Orbital Theory, , Wiley, New York
  • Goh, L.Y., Chen, W., Wang, R.C.S., Karaghiosoft, K.A., Tetra chromium complex from the Cage-Opening of P4S3 by Cyclopentadienylchromium Tricarbonyl. Synthesis, X-Ray Crystal Structure, and Thermal Degradation of Cp4Cr4(CO)9(P4S3).CpCr(CO)3 as a byproduct (1995) Organometallics, 14, pp. 3886-3896
  • Harris, R.K., Wilkes, R.J., Wood, P.T., Woolins, J.D., Solid-State phosphorous-31 nuclear magnetic resonance spectroscopy of phosphorous sulfides (1989) J. Chem. Soc. Dalton Trans., pp. 809-813
  • Gibby, M.G., Pines, A., Rhim, W.K., Waugh, J.S., 31P Chemical shielding Anisotropy in Solids. Single Crystal and Powder study at 99.4MHz. (1972) J. Chem. Phys., 56, pp. 991-995
  • Stueber, D., Orendt, A.M., Facelli, J.C., Parry, R.W., Grant, D.M., 13C NMR Study of Potasium Carbonate, Monothio-, Dithio- and Trithiocarbonate and Some Monoalkyl Derivatives, , Manuscript in Preparation

Citas:

---------- APA ----------
Schneider, D.M., Caputo, M.C., Ferraro, M.B. & Facelli, J.C. (2000) . Modeling NMR chemical shifts: Crystal potential derived point charge (CPPCh) model to calculate solid state effects on 31 P chemical shifts tensors. International Journal of Molecular Sciences, 1(4), 75-83.
http://dx.doi.org/10.3390/ijms1040075
---------- CHICAGO ----------
Schneider, D.M., Caputo, M.C., Ferraro, M.B., Facelli, J.C. "Modeling NMR chemical shifts: Crystal potential derived point charge (CPPCh) model to calculate solid state effects on 31 P chemical shifts tensors" . International Journal of Molecular Sciences 1, no. 4 (2000) : 75-83.
http://dx.doi.org/10.3390/ijms1040075
---------- MLA ----------
Schneider, D.M., Caputo, M.C., Ferraro, M.B., Facelli, J.C. "Modeling NMR chemical shifts: Crystal potential derived point charge (CPPCh) model to calculate solid state effects on 31 P chemical shifts tensors" . International Journal of Molecular Sciences, vol. 1, no. 4, 2000, pp. 75-83.
http://dx.doi.org/10.3390/ijms1040075
---------- VANCOUVER ----------
Schneider, D.M., Caputo, M.C., Ferraro, M.B., Facelli, J.C. Modeling NMR chemical shifts: Crystal potential derived point charge (CPPCh) model to calculate solid state effects on 31 P chemical shifts tensors. Int. J. Mol. Sci. 2000;1(4):75-83.
http://dx.doi.org/10.3390/ijms1040075