Artículo

Perez-Perri, J.I.; Acevedo, J.M.; Wappner, P. "Epigenetics: New questions on the response to hypoxia" (2011) International Journal of Molecular Sciences. 12(7):4705-4721
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Reduction in oxygen levels below normal concentrations plays important roles in different normal and pathological conditions, such as development, tumorigenesis, chronic kidney disease and stroke. Organisms exposed to hypoxia trigger changes at both cellular and systemic levels to recover oxygen homeostasis. Most of these processes are mediated by Hypoxia Inducible Factors, HIFs, a family of transcription factors that directly induce the expression of several hundred genes in mammalian cells. Although different aspects of HIF regulation are well known, it is still unclear by which precise mechanism HIFs activate transcription of their target genes. Concomitantly, hypoxia provokes a dramatic decrease of general transcription that seems to rely in part on epigenetic changes through a poorly understood mechanism. In this review we discuss the current knowledge on chromatin changes involved in HIF dependent gene activation, as well as on other epigenetic changes, not necessarily linked to HIF that take place under hypoxic conditions. © 2011 by the authors.

Registro:

Documento: Artículo
Título:Epigenetics: New questions on the response to hypoxia
Autor:Perez-Perri, J.I.; Acevedo, J.M.; Wappner, P.
Filiación:Instituto Leloir, Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1033AAJ, Argentina
Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
Palabras clave:Chromatin; HIF; Histone; Jumonji; Oxygen; Stress; histone acetyltransferase; histone acetyltransferase PCAF; histone deacetylase; histone deacetylase 1; histone deacetylase 4; histone deacetylase 5; histone deacetylase 7; histone demethylase; hypoxia inducible factor; hypoxia inducible factor 1alpha; hypoxia inducible factor 2alpha; sirtuin 1; chromatin; histone; histone acetyltransferase; histone deacetylase; chromatin assembly and disassembly; chromatin structure; DNA methylation; epigenetics; gene activation; gene expression regulation; gene induction; gene repression; histone acetylation; histone methylation; histone modification; homeostasis; hypoxia; nonhuman; review; transcription initiation; animal; anoxia; chemistry; chromatin; genetics; human; metabolism; Mammalia; Animals; Anoxia; Chromatin; Epigenomics; Histone Acetyltransferases; Histone Deacetylases; Histones; Humans
Año:2011
Volumen:12
Número:7
Página de inicio:4705
Página de fin:4721
DOI: http://dx.doi.org/10.3390/ijms12074705
Título revista:International Journal of Molecular Sciences
Título revista abreviado:Int. J. Mol. Sci.
ISSN:14220067
CAS:histone acetyltransferase, 9054-51-7; histone deacetylase, 9076-57-7; histone, 9062-68-4; histone acetyltransferase, 9054-51-7; histone deacetylase, 9076-57-7; Chromatin; Histone Acetyltransferases; Histone Deacetylases; Histones
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14220067_v12_n7_p4705_PerezPerri

Referencias:

  • Kaelin Jr., W.G., Ratcliffe, P.J., Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway (2008) Mol. Cell, 30, pp. 393-402
  • Semenza, G.L., Regulation of oxygen homeostasis by hypoxia-inducible factor 1 (2009) Physiology (Bethesda), 24, pp. 97-106
  • Majmundar, A.J., Wong, W.J., Simon, M.C., Hypoxia-inducible factors and the response to hypoxic stress (2010) Mol. Cell, 40, pp. 294-309
  • Stone, J., Itin, A., Alon, T., Pe'er, J., Gnessin, H., Chan-Ling, T., Keshet, E., Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia (1995) J. Neurosci, 15, pp. 4738-4747
  • Chen, E.Y., Fujinaga, M., Giaccia, A.J., Hypoxic microenvironment within an embryo induces apoptosis and is essential for proper morphological development (1999) Teratology, 60, pp. 215-225
  • Krishnan, J., Ahuja, P., Bodenmann, S., Knapik, D., Perriard, E., Krek, W., Perriard, J.C., Essential role of developmentally activated hypoxia-inducible factor 1alpha for cardiac morphogenesis and function (2008) Circ. Res, 103, pp. 1139-1146
  • Dunwoodie, S.L., The role of hypoxia in development of the Mammalian embryo (2009) Dev. Cell, 17, pp. 755-773
  • Nangaku, M., Chronic hypoxia and tubulointerstitial injury: A final common pathway to end-stage renal failure (2006) J. Am. Soc. Nephrol, 17, pp. 17-25
  • Shi, H., Hypoxia inducible factor 1 as a therapeutic target in ischemic stroke (2009) Curr. Med. Chem, 16, pp. 4593-4600
  • Lu, X., Kang, Y., Hypoxia and hypoxia-inducible factors: Master regulators of metastasis (2010) Clin. Cancer Res, 16, pp. 5928-5935
  • Semenza, G.L., HIF-1: Upstream and downstream of cancer metabolism (2010) Curr. Opin. Genet. Dev, 20, pp. 51-56
  • Maxwell, P.H., Pugh, C.W., Ratcliffe, P.J., Inducible operation of the erythropoietin 3' enhancer in multiple cell lines: Evidence for a widespread oxygen-sensing mechanism (1993) Proc. Natl. Acad. Sci. USA, 90, pp. 2423-2427
  • Wang, G.L., Semenza, G.L., General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia (1993) Proc. Natl. Acad. Sci. USA, 90, pp. 4304-4308
  • Semenza, G.L., HIF-1, O(2), and the 3 PHDs: How animal cells signal hypoxia to the nucleus (2001) Cell, 107, pp. 1-3
  • Oxygen sensing in the hypoxic response pathway: Regulation of the hypoxia-inducible transcription factor (2003) Genes. Dev, 17, pp. 2614-2623
  • Bruick, R.K., McKnight, S.L., A conserved family of prolyl-4-hydroxylases that modify HIF (2001) Science, 294, pp. 1337-1340
  • Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O'Rourke, J., Mole, D.R., Mukherji, M., Dhanda, A., C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation (2001) Cell, 107, pp. 43-54
  • Schofield, C.J., Ratcliffe, P.J., Oxygen sensing by HIF hydroxylases (2004) Nat. Rev. Mol. Cell Biol, 5, pp. 343-354
  • Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Ratcliffe, P.J., The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis (1999) Nature, 399, pp. 271-275
  • Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Kaelin Jr., W.G., HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing (2001) Science, 292, pp. 464-468
  • Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim, A., Ratcliffe, P.J., Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation (2001) Science, 292, pp. 468-472
  • Johnson, A.B., Denko, N., Barton, M.C., Hypoxia induces a novel signature of chromatin modifications and global repression of transcription (2008) Mutat. Res, 640, pp. 174-179
  • Kornberg, R.D., Lorch, Y., Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome (1999) Cell, 98, pp. 285-294
  • Hayes, J.J., Hansen, J.C., Nucleosomes and the chromatin fiber (2001) Curr. Opin. Genet. Dev, 11, pp. 124-129
  • Horn, P.J., Peterson, C.L., Molecular biology. Chromatin higher order folding--wrapping up transcription (2002) Science, 297, pp. 1824-1827
  • Nemeth, A., Langst, G., Chromatin higher order structure: Opening up chromatin for transcription (2004) Brief. Funct. Genomic Proteomic, 2, pp. 334-343
  • Tremethick, D.J., Higher-order structures of chromatin: The elusive 30 nm fiber (2007) Cell, 128, pp. 651-654
  • Luger, K., Richmond, T.J., The histone tails of the nucleosome (1998) Curr. Opin. Genet. Dev, 8, pp. 140-146
  • Jenuwein, T., Allis, C.D., Translating the histone code (2001) Science, 293, pp. 1074-1080
  • Peterson, C.L., Laniel, M.A., Histones and histone modifications (2004) Curr. Biol, 14, pp. R546-R551
  • Lee, J.S., Smith, E., Shilatifard, A., The language of histone crosstalk (2010) Cell, 142, pp. 682-685
  • Eisen, J.A., Sweder, K.S., Hanawalt, P.C., Evolution of the SNF2 family of proteins: Subfamilies with distinct sequences and functions (1995) Nucleic Acids Res, 23, pp. 2715-2723
  • Muchardt, C., Yaniv, M., ATP-dependent chromatin remodelling: SWI/SNF and Co. are on the job (1999) J. Mol. Biol, 293, pp. 187-198
  • Havas, K., Whitehouse, I., Owen-Hughes, T., ATP-dependent chromatin remodeling activities (2001) Cell. Mol. Life Sci, 58, pp. 673-682
  • Johnson, A.B., Barton, M.C., Hypoxia-induced and stress-specific changes in chromatin structure and function (2007) Mutat. Res, 618, pp. 149-162
  • Arany, Z., Huang, L.E., Eckner, R., Bhattacharya, S., Jiang, C., Goldberg, M.A., Bunn, H.F., Livingston, D.M., An essential role for p300/CBP in the cellular response to hypoxia (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 12969-12973
  • Ema, M., Hirota, K., Mimura, J., Abe, H., Yodoi, J., Sogawa, K., Poellinger, L., Fujii-Kuriyama, Y., Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: Their stabilization and redox signal-induced interaction with CBP/p300 (1999) EMBO J, 18, pp. 1905-1914
  • Carrero, P., Okamoto, K., Coumailleau, P., O'Brien, S., Tanaka, H., Poellinger, L., Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1alpha (2000) Mol. Cell Biol, 20, pp. 402-415
  • Ruas, J.L., Poellinger, L., Pereira, T., Functional analysis of hypoxia-inducible factor-1 alpha-mediated transactivation. Identification of amino acid residues critical for transcriptional activation and/or interaction with CREB-binding protein (2002) J. Biol. Chem, 277, pp. 38723-38730
  • Ruas, J.L., Poellinger, L., Pereira, T., Role of CBP in regulating HIF-1-mediated activation of transcription (2005) J. Cell Sci, 118, pp. 301-311
  • Kato, H., Tamamizu-Kato, S., Shibasaki, F., Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity (2004) J. Biol. Chem, 279, pp. 41966-41974
  • Seo, H.W., Kim, E.J., Na, H., Lee, M.O., Transcriptional activation of hypoxia-inducible factor-1alpha by HDAC4 and HDAC5 involves differential recruitment of p300 and FIH-1 (2009) FEBS Lett, 583, pp. 55-60
  • Wang, F., Zhang, R., Beischlag, T.V., Muchardt, C., Yaniv, M., Hankinson, O., Roles of Brahma and Brahma/SWI2-related gene 1 in hypoxic induction of the erythropoietin gene (2004) J. Biol. Chem, 279, pp. 46733-46741
  • Peserico, A., Simone, C., Physical and functional HAT/HDAC interplay regulates protein acetylation balance (2011) J. Biomed. Biotechnol, 2011, pp. 371-832
  • Fischle, W., Wang, Y., Allis, C.D., Histone and chromatin cross-talk (2003) Curr. Opin. Cell. Biol, 15, pp. 172-183
  • Shogren-Knaak, M., Ishii, H., Sun, J.M., Pazin, M.J., Davie, J.R., Peterson, C.L., Histone H4-K16 acetylation controls chromatin structure and protein interactions (2006) Science, 311, pp. 844-847
  • Kalkhoven, E., CBP and p300: HATs for different occasions (2004) Biochem. Pharmacol, 68, pp. 1145-1155
  • Bannister, A.J., Kouzarides, T., The CBP co-activator is a histone acetyltransferase (1996) Nature, 384, pp. 641-643
  • Yuan, W., Condorelli, G., Caruso, M., Felsani, A., Giordano, A., Human p300 protein is a coactivator for the transcription factor MyoD (1996) J. Biol. Chem, 271, pp. 9009-9013
  • Dames, S.A., Martinez-Yamout, M., de Guzman, R.N., Dyson, H.J., Wright, P.E., Structural basis for Hif-1 alpha /CBP recognition in the cellular hypoxic response (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 5271-5276
  • Freedman, S.J., Sun, Z.Y., Poy, F., Kung, A.L., Livingston, D.M., Wagner, G., Eck, M.J., Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 5367-5372
  • Ruas, J.L., Berchner-Pfannschmidt, U., Malik, S., Gradin, K., Fandrey, J., Roeder, R.G., Pereira, T., Poellinger, L., Complex regulation of the transactivation function of hypoxia-inducible factor-1 alpha by direct interaction with two distinct domains of the CREB-binding protein/p300 (2010) J. Biol. Chem, 285, pp. 2601-2609
  • Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J., Whitelaw, M.L., Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch (2002) Science, 295, pp. 858-861
  • Mahon, P.C., Hirota, K., Semenza, G.L., FIH-1: A novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity (2001) Genes Dev, 15, pp. 2675-2686
  • Webb, J.D., Coleman, M.L., Pugh, C.W., Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing (2009) Cell. Mol. Life Sci, 66, pp. 3539-3554
  • Pereira, T., Zheng, X., Ruas, J.L., Tanimoto, K., Poellinger, L., Identification of residues critical for regulation of protein stability and the transactivation function of the hypoxia-inducible factor-1alpha by the von Hippel-Lindau tumor suppressor gene product (2003) J. Biol. Chem, 278, pp. 6816-6823
  • Lisy, K., Peet, D.J., Turn me on: Regulating HIF transcriptional activity (2008) Cell Death Differ, 15, pp. 642-649
  • Lim, J.H., Lee, Y.M., Chun, Y.S., Chen, J., Kim, J.E., Park, J.W., Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha (2010) Mol. Cell, 38, pp. 864-878
  • Dioum, E.M., Chen, R., Alexander, M.S., Zhang, Q., Hogg, R.T., Gerard, R.D., Garcia, J.A., Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1 (2009) Science, 324, pp. 1289-1293
  • Ebert, B.L., Bunn, H.F., Regulation of transcription by hypoxia requires a multiprotein complex that includes hypoxia-inducible factor 1, an adjacent transcription factor, and p300/CREB binding protein (1998) Mol. Cell. Biol, 18, pp. 4089-4096
  • Jung, J.E., Lee, H.G., Cho, I.H., Chung, D.H., Yoon, S.H., Yang, Y.M., Lee, J.W., Chung, M.H., STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells (2005) FASEB J, 19, pp. 1296-1298
  • Wang, F., Zhang, R., Wu, X., Hankinson, O., Roles of coactivators in hypoxic induction of the erythropoietin gene (2010) PLoS One, 5. , e10002
  • Kasper, L.H., Boussouar, F., Boyd, K., Xu, W., Biesen, M., Rehg, J., Baudino, T.A., Brindle, P.K., Two transactivation mechanisms cooperate for the bulk of HIF-1-responsive gene expression (2005) EMBO J, 24, pp. 3846-3858
  • Krieg, A.J., Rankin, E.B., Chan, D., Razorenova, O., Fernandez, S., Giaccia, A.J., Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth (2010) Mol. Cell. Biol, 30, pp. 344-353
  • Zhou, X., Sun, H., Chen, H., Zavadil, J., Kluz, T., Arita, A., Costa, M., Hypoxia induces trimethylated H3 lysine 4 by inhibition of JARID1A demethylase (2010) Cancer Res, 70, pp. 4214-4221
  • Islam, K.N., Mendelson, C.R., Permissive effects of oxygen on cyclic AMP and interleukin-1 stimulation of surfactant protein A gene expression are mediated by epigenetic mechanisms (2006) Mol. Cell. Biol, 26, pp. 2901-2912
  • Chen, H., Yan, Y., Davidson, T.L., Shinkai, Y., Costa, M., Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells (2006) Cancer Res, 66, pp. 9009-9016
  • Tausendschon, M., Dehne, N., Brune, B., Hypoxia causes epigenetic gene regulation in macrophages by attenuating Jumonji histone demethylase activity (2011) Cytokine, 53, pp. 256-262
  • Yang, X.J., Seto, E., Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression (2003) Curr. Opin. Genet. Dev, 13, pp. 143-153
  • Ahringer, J., NuRD and SIN3 histone deacetylase complexes in development (2000) Trends Genet, 16, pp. 351-356
  • Blander, G., Guarente, L., The Sir2 family of protein deacetylases (2004) Annu. Rev. Biochem, 73, pp. 417-435
  • Yang, X.J., Gregoire, S., Class, I.I., Histone deacetylases: From sequence to function, regulation, and clinical implication (2005) Mol. Cell. Biol, 25, pp. 2873-2884
  • Vaquero, A., Sternglanz, R., Reinberg, D., NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs (2007) Oncogene, 26, pp. 5505-5520
  • Chen, S., Sang, N., Histone deacetylase inhibitors: The epigenetic therapeutics that repress hypoxia-inducible factors (2011) J. Biomed. Biotechnol, 2011, pp. 197-946
  • Lee, K.J., Lee, K.Y., Lee, Y.M., Downregulation of a tumor suppressor RECK by hypoxia through recruitment of HDAC1 and HIF-1alpha to reverse HRE site in the promoter (2010) Biochim. Biophys. Acta, 1803, pp. 608-616
  • Lee, J.S., Kim, Y., Kim, I.S., Kim, B., Choi, H.J., Lee, J.M., Shin, H.J., Seo, S.B., Negative regulation of hypoxic responses via induced Reptin methylation (2010) Mol. Cell, 39, pp. 71-85
  • Fath, D.M., Kong, X., Liang, D., Lin, Z., Chou, A., Jiang, Y., Fang, J., Sang, N., Histone deacetylase inhibitors repress the transactivation potential of hypoxia-inducible factors independently of direct acetylation of HIF-alpha (2006) J. Biol. Chem, 281, pp. 13612-13619
  • Marks, P.A., Richon, V.M., Breslow, R., Rifkind, R.A., Histone deacetylase inhibitors as new cancer drugs (2001) Curr. Opin. Oncol, 13, pp. 477-483
  • Johnstone, R.W., Licht, J.D., Histone deacetylase inhibitors in cancer therapy: Is transcription the primary target (2003) Cancer Cell, 4, pp. 13-18
  • Drummond, D.C., Noble, C.O., Kirpotin, D.B., Guo, Z., Scott, G.K., Benz, C.C., Clinical development of histone deacetylase inhibitors as anticancer agents (2005) Annu. Rev. Pharmacol. Toxicol, 45, pp. 495-528
  • Kenneth, N.S., Mudie, S., van Uden, P., Rocha, S., SWI/SNF regulates the cellular response to hypoxia (2009) J. Biol. Chem, 284, pp. 4123-4131
  • Tang, L., Nogales, E., Ciferri, C., Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription (2010) Prog. Biophys. Mol. Biol, 102, pp. 122-128
  • Dekanty, A., Romero, N.M., Bertolin, A.P., Thomas, M.G., Leishman, C.C., Perez-Perri, J.I., Boccaccio, G.L., Wappner, P., Drosophila genome-wide RNAi screen identifies multiple regulators of HIF-dependent transcription in hypoxia (2010) PLoS Genet, 6. , e1000994
  • Klose, R.J., Kallin, E.M., Zhang, Y., JmjC-domain-containing proteins and histone demethylation (2006) Nat. Rev. Genet, 7, pp. 715-727
  • Shi, Y., Histone lysine demethylases: Emerging roles in development, physiology and disease (2007) Nat. Rev. Genet, 8, pp. 829-833
  • Shi, Y., Whetstine, J.R., Dynamic regulation of histone lysine methylation by demethylases (2007) Mol. Cell, 25, pp. 1-14
  • Loenarz, C., Schofield, C.J., Expanding chemical biology of 2-oxoglutarate oxygenases (2008) Nat. Chem. Biol, 4, pp. 152-156
  • Berger, S.L., The complex language of chromatin regulation during transcription (2007) Nature, 447, pp. 407-412
  • Xia, X., Lemieux, M.E., Li, W., Carroll, J.S., Brown, M., Liu, X.S., Kung, A.L., Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 4260-4265
  • Yang, J., Ledaki, I., Turley, H., Gatter, K.C., Montero, J.C., Li, J.L., Harris, A.L., Role of hypoxia-inducible factors in epigenetic regulation via histone demethylases (2009) Ann. N. Y. Acad. Sci, 1177, pp. 185-197
  • Beyer, S., Kristensen, M.M., Jensen, K.S., Johansen, J.V., Staller, P., The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF (2008) J. Biol. Chem, 283, pp. 36542-36552
  • Pollard, P.J., Loenarz, C., Mole, D.R., McDonough, M.A., Gleadle, J.M., Schofield, C.J., Ratcliffe, P.J., Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha (2008) Biochem. J, 416, pp. 387-394
  • Wellmann, S., Bettkober, M., Zelmer, A., Seeger, K., Faigle, M., Eltzschig, H.K., Buhrer, C., Hypoxia upregulates the histone demethylase JMJD1A via HIF-1 (2008) Biochem. Biophys. Res. Commun, 372, pp. 892-897
  • Costa, M., Davidson, T.L., Chen, H., Ke, Q., Zhang, P., Yan, Y., Huang, C., Kluz, T., Nickel carcinogenesis: Epigenetics and hypoxia signaling (2005) Mutat. Res, 592, pp. 79-88
  • Watson, J.A., Watson, C.J., McCrohan, A.M., Woodfine, K., Tosetto, M., McDaid, J., Gallagher, E., McCann, A., Generation of an epigenetic signature by chronic hypoxia in prostate cells (2009) Hum. Mol. Genet, 18, pp. 3594-3604
  • Watson, J.A., Watson, C.J., McCann, A., Baugh, J., Epigenetics the epicenter of the hypoxic response (2010) Epigenetics, 5, pp. 293-296
  • Xia, X., Kung, A.L., Preferential binding of HIF-1 to transcriptionally active loci determines cell-type specific response to hypoxia (2009) Genome Biol, 10. , doi: 10.1186/gb-2009-10-10-r113

Citas:

---------- APA ----------
Perez-Perri, J.I., Acevedo, J.M. & Wappner, P. (2011) . Epigenetics: New questions on the response to hypoxia. International Journal of Molecular Sciences, 12(7), 4705-4721.
http://dx.doi.org/10.3390/ijms12074705
---------- CHICAGO ----------
Perez-Perri, J.I., Acevedo, J.M., Wappner, P. "Epigenetics: New questions on the response to hypoxia" . International Journal of Molecular Sciences 12, no. 7 (2011) : 4705-4721.
http://dx.doi.org/10.3390/ijms12074705
---------- MLA ----------
Perez-Perri, J.I., Acevedo, J.M., Wappner, P. "Epigenetics: New questions on the response to hypoxia" . International Journal of Molecular Sciences, vol. 12, no. 7, 2011, pp. 4705-4721.
http://dx.doi.org/10.3390/ijms12074705
---------- VANCOUVER ----------
Perez-Perri, J.I., Acevedo, J.M., Wappner, P. Epigenetics: New questions on the response to hypoxia. Int. J. Mol. Sci. 2011;12(7):4705-4721.
http://dx.doi.org/10.3390/ijms12074705