Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Oxidative stress plays a critical role in the pathogenesis of diabetes, hypertension and atherosclerosis. Some authors reported that fat accumulation correlates to systemic oxidative stress in humans and mice, but the relationship of lipid production and oxidative metabolism is still unclear. In our laboratory we used 3T3-L1 preadipocytes, which are able to differentiate into mature adipocytes and accumulate lipids, as obesity model. We showed that intracellular reactive oxygen species (ROS) and antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities increased in parallel with fat accumulation. Meanwhile N-acetylcysteine (NAC), a well known antioxidant and Glutathione (GSH) precursor, inhibited ROS levels as well as fat accumulation in a concentration-dependent manner. NAC also inhibited both adipogenic transcription factors CCAAT/enhancer binding protein beta (C/EBP) and peroxisomal proliferator activated receptor gamma (PPAR β) expression; we suggested that intracellular GSH content could be responsible for these effects. © 2011 by the authors; licensee MDPI, Basel, Switzerland.

Registro:

Documento: Artículo
Título:N-acetylcysteine reduces markers of differentiation in 3T3-L1 adipocytes
Autor:Calzadilla, P.; Sapochnik, D.; Cosentino, S.; Diz, V.; Dicelio, L.; Calvo, J.C.; Guerra, L.N.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Buenos Aires 1428, Argentina
Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Buenos Aires 1428, Argentina
IBYME-CONICET, Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
Palabras clave:Adipocyte differentiation; NAC; Triglyceride; acetylcysteine; beta actin; CCAAT enhancer binding protein; copper zinc superoxide dismutase; glutathione peroxidase; glutathione peroxidase 1; insulin receptor; manganese superoxide dismutase; metallothionein; peroxisome proliferator activated receptor gamma; protein kinase B; reactive oxygen metabolite; somatomedin C; superoxide dismutase; triacylglycerol; acetylcysteine; biological marker; CCAAT enhancer binding protein beta; glutathione; glutathione peroxidase; peroxisome proliferator activated receptor gamma; reactive oxygen metabolite; superoxide dismutase; triacylglycerol; adipocyte; aerobic metabolism; article; cell culture; cell differentiation; concentration response; controlled study; culture medium; DNA content; down regulation; enzyme activity; enzyme assay; human; human cell; lipid peroxidation; lipid storage; low drug dose; obesity; oxidative stress; protein content; protein expression; protein phosphorylation; Western blotting; 3T3 cell line; adipocyte; animal; cell differentiation; cytology; metabolism; mouse; Mus; 3T3-L1 Cells; Acetylcysteine; Adipocytes; Animals; Biological Markers; CCAAT-Enhancer-Binding Protein-beta; Cell Differentiation; Glutathione; Glutathione Peroxidase; Mice; PPAR gamma; Reactive Oxygen Species; Superoxide Dismutase; Triglycerides
Año:2011
Volumen:12
Número:10
Página de inicio:6936
Página de fin:6951
DOI: http://dx.doi.org/10.3390/ijms12106936
Título revista:International Journal of Molecular Sciences
Título revista abreviado:Int. J. Mol. Sci.
ISSN:14220067
CAS:acetylcysteine, 616-91-1; copper zinc superoxide dismutase, 149394-67-2; glutathione peroxidase, 9013-66-5; protein kinase B, 148640-14-6; somatomedin C, 67763-96-6; superoxide dismutase, 37294-21-6, 9016-01-7, 9054-89-1; glutathione, 70-18-8; glutathione peroxidase, 9013-66-5; superoxide dismutase, 37294-21-6, 9016-01-7, 9054-89-1; Acetylcysteine; Biological Markers; CCAAT-Enhancer-Binding Protein-beta; Glutathione; Glutathione Peroxidase; PPAR gamma; Reactive Oxygen Species; Superoxide Dismutase; Triglycerides
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_14220067_v12_n10_p6936_Calzadilla.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14220067_v12_n10_p6936_Calzadilla

Referencias:

  • Frost, S.C., Lane, M.D., Evidence for the involvement of vicinal sulfhydryl groups in insulin-activated hexose transport by 3T3-L1 adipocytes (1985) J. Biol. Chem, 260, pp. 2646-2652
  • Mac Dougald, O., Lane, M.D., Transcriptional regulation of gene expression during adipocyte differentiation (1995) Ann. Rev. Biochem, 64, pp. 345-373
  • Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Shimomura, I., Increased oxidative stress in obesity and its impact on metabolic syndrome (2004) J. Clin. Invest, 114, pp. 1752-1761
  • Bustamante, J., Guerra, L.N., Bredeston, J., Mordoh, J., Boveris, A., Melanin content and hydroperoxide metabolism in human melanoma cells (1991) Exp. Cell. Res, 196, pp. 172-176
  • Guerra, L.N., Moiguer, S., Karner, M., de Molina, M.C., Sreider, C.M., Burdman, J.A., Antioxidants in the treatment of Graves disease (2001) IUBMB Life, 51, pp. 105-109
  • Guerra, L.N., de Molina, R.M.C., Miler, E.A., Moiguer, S., Karner, M., Burdman, J.A., Antioxidants and methimazole in the treatments of Graves' disease: Effect on urinary malondialdehyde levels (2005) Clin. Chim. Acta, 352, pp. 115-120
  • Jaswal, S., Metha, H.C., Sood, A.K., Kaur, J., Antioxidant status in rheumatoid arthritis and role of antioxidant therapy (2003) Clin. Chim. Acta, 338, pp. 123-129
  • Browniee, M., Biochemistry and molecular cell biology of diabetic complications (2001) Nature, 414, pp. 813-820
  • Adam-Vizi, V., Chinopoulos, C., Bioenergetics and the formation of mitochondrial reactive oxygen species (2006) Trends Pharmacol. Sci, 27, pp. 639-645
  • Kuehl, F.A., Egan, R.N., Prostaglandins, arachidonic acid and inflammation (1980) Science, 210, pp. 978-984
  • Hille, R., Nishino, T., Xantine oxidase and xantine dehydrogenase (1995) FASEB J, 9, pp. 995-1003
  • Dahlgren, C., Karlsson, A., Respiratory burst in human neuthrophils (1999) J. Immunol. Methods, 232, pp. 3-14
  • Gottlieb, R.A., Cytochrome p450: Major player in reperfusion injury (2003) Arch. Biochem. Biophys, 420, pp. 262-267
  • Scrader, M., Fahimi, H.D., Peroxisomes and oxidative stress (2006) Biochim. Biophys. Acta, 1763, pp. 1755-1766
  • Shonfeld, P., Wojtczak, L., Fatty acids as modulators of the cellular production of reactive oxygen species (2008) Free Radic. Biol. Med, 45, pp. 231-241
  • Druge, W., Free radicals in physiological control of cell function (2002) Physiol. Rev, 82, pp. 47-95
  • Stone, J.R., Yang, S.P., Hydrogen peroxide: A signaling messenger (2006) Antioxid. Redox Signal, 8, pp. 243-270
  • Mahadev, K., Wu, X., Zilbering, A., Zhu, L., Todd, J., Lawrence, R., Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes (2001) J. Biol. Chem, 276, pp. 48662-48669
  • Lee, H., Jeong, Y., Choi, H., Ko, E., Kim, J., Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion (2009) J. Biol. Chem, 284, pp. 10601-10609
  • Kim, J.R., Ryu, H.H., Chung, H.J., Lee, J.H., Kim, S.W., Kwun, W.H., Baek, S.H., Kim, J.H., Association of anti-obesity activity of N-acteylcysteine with metalothionein-II down-regulation (2006) Exp. Mol. Med, 30, pp. 162-172
  • Blouet, C., Miriotti, F., Azzout-Marniche, D., Mathe, V., Mikogami, T., Torne, D., Huncau, J.F., Dietary cysteine alleviates sucrose-induced oxidative stress and insulin resistance (2007) Free Radic. Biol. Med, 42, pp. 1096-1097
  • Lin, Y., Berg, A.H., Iyengar, P., Lam, T., Giacca, A., Combs, T.P., Rajala, M.W., Li, W., The hyperglycemia-induced in inflammatory response in adipocytes (2005) J. Biol. Chem, 280, pp. 4617-4626
  • Alberici, L., Oliveira, H., Palm, B., Mantello, C., Augusto, A., Zecchin, K., Gurgeira, S., Vercesi, A., Mitochondrial ATP-sensitive K+ channels as redox signals to liver mitochondria in response to hypertriglyceridemia (2009) Free Radic. Biol. Med, 47, pp. 1422-1427
  • McClung, J., Roneker, C., Mu, W., Lisk, D., Langlais, P., Liu, F., Lei, X.G., Development of insulin resistant and obesity in mice overexpressing cellular glutathione peroxidase (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 8852-8857
  • Miler, E.A., Rios, M.C., Dominguez, G., Guerra, L.N., Thyroid hormone effect in human hepatocytes (2008) Red. Rep, 13, pp. 185-191
  • Cotgreave, I.A., N-acetylcysteine: Pharmacological considerations and experimental and clinical applications (1997) Adv. Pharmacol, 38, pp. 205-207
  • Araki, S., Dobashi, K., Kugo, K., Yamamoto, Y., Asayama, K., Shirahata, A., N-acetylcysteine attenuates TNF-alpha induced changes in secretion of interleukin-6, plaminogen activator inhibitor-1 and adiponectin from 3T3-L1 adipocytes (2006) Life Sci, 79, pp. 2405-2412
  • Kobayashi, H., Matsuda, M., Fukuhara, A., Komuro, R., Shimomura, I., Dysregulated glutathione metabolism links to impaired insulin action in adipocytes (2009) Am. J. Physiol. Endocrinol. Metab, 296, pp. 1326-1334
  • Hallenborg, P., Jorgensen, C., Petersen, R., Feddersen, S., Araujo, P., Markt, P., Langer, T., Koppen, A., Epidermis-type lipoxigenase 3 regulates adipocyte differentiation and peroxisome proliferator activated receptor activity (2010) Mol. Cell. Biol, 30, pp. 4077-4091
  • Durlinton, G.J., Ross, S.E., Mac Dougald, O.A., The role of C/EBP genes in adipocyte diffentiation (1998) J. Biol. Chem, 272, pp. 30057-30060
  • Tang, Q., Otto, T., Lane, D., CCAAT/enhancer-binding protein _ is required for mitotic clonal expansion during adipogenesis (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 850-855
  • Carriere, A., Carmona, M.C., Fernandez, Y., Rigoulet, M., Wengeri, R.H., Penicaud, L., Casteilla, L., Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD 153 and adipocyte differentiation (2004) J. Biol. Chem, 39, pp. 40462-40469
  • Tang, Q., Lane, M.D., Role of C/EBP_ homologous protein (CHOP-10) in the programmed activation of CCAAT/enhancer binding protein beta during adipogenesis (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 12446-12450
  • Rubin, G.L., Zhao, Y., Kalus, A.M., Simpson, E.R., Peroxisome proliferator-activated receptor gamma ligands inhibit estrogen biosynthesis in human breast adipose tissue: Possible implications for breast cancer therapy (2000) Cancer Res, 60, pp. 1604-1608
  • Park, B.H., Qiang, L., Farmer, S.R., Phosphorylation of C/EBP b at a consensus extracelluar signal-regulated kinase/glycogen synthase kinase 3 site is required for the induction of adiponectin gene expression during the differentiation of mouse fibroblast into adipocytes (2004) Mol. Cell Biol, 24, pp. 8671-8679
  • Gou, W., Xie, W., Han, J., Modulation of adipocytes lipogenesis by octanoate: Involvement of reactive oxygen species (2006) Nutr. Metab, 3, pp. 30-37
  • Fukuoka, H., Iida, K., Nishizawa, H., Imanaka, M., Takeno, R., Iguchi, G., Takahashi, M., Chihara, K., IGF-1 stimulates reactive oxygen species (ROS) production and inhibits insulin-dependent glucose uptake via ROS in 3T3L-1 adipocytes (2010) Growth Horm. IGF Res, 20, pp. 212-219
  • Lin, D., Yin, M., Effects on cysteine-containing compounds on biosynthesis of triacylgycerol and cholesterol and anti-oxidative protection in liver from mice consuming a high-fat diet (2008) Br. J. Nutr, 99, pp. 37-41
  • Awasthi, Y.C., Ansari, G.A.S., Anasthi, S., Regulation of 4-hydroxynonenal mediated signaling by glutathione S-transferases (2005) Methods Enzymol, 401, pp. 379-407
  • Uchida, K., 4-hydroxy-2-nonenal: A product and mediator of oxidative stress (2003) Prog. Lipid Res, 42, pp. 13-343
  • Pizzimenti, S., Laurora, S., Briatore, F., Ferreti, C., Dianzani, M.U., Barrera, G., Sinergistic effect of 4-hydroxinonenal and PPAR ligands in controlling human leukemic cell growth and differentiation (2002) Free Radic. Biol. Med, 32, pp. 233-245
  • Muzio, G., Trombetta, A., Maggiora, M., Martinasso, G., Vasiliou, V., Lassen, N., Canuto, R.A., Arachidonic and suppressor growth human lung tumor A 549 cells through down regulation of ALDH 3 A1 expression (2006) Free Radic. Biol. Med, 40, pp. 1929-1938
  • Ristow, M., Zarse, K., Oberbach, A., Kloting, N., Birringer, M., Kiehntopt, M., Stumvoll, M., Bluher, M., Antioxidants prevents health promoting effects of physical exercise in humans (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 8665-8670
  • Hsu, C.L., Yen, G.C., Effect of flavonoids and phenolic acid on the inhibition of adipogenesis in 3T3-L1 adipocytes (2007) J. Agric. Food Chem, 17, pp. 8404-8410
  • Park, H.S., Kim, S.H., Kim, Y.S., Ryu, S.Y., Hwang, J.T., Yang, H.J., Kim, G.H., Kim, M.S., Luteolin inhibits adipogenic differentiation by regulating PPAR gamma activation (2009) Biofactors, 35, pp. 373-379
  • Uto-Kondo, H., Ohmori, R., Kiyose, C., Kishimoto, Y., Saito, H., Igarashi, O., Kondo, K., Tocotrienol suppresses adipocyte differentiation and AKT phosphorylation in 3T3-L1 preadipocytes (2009) J. Nutr, 139, pp. 51-57
  • Julianelli, V.L., Guerra, L.N., Calvo, J.C., Cell-cell communication between mouse mammary epithelial cells and 3T3-L1 preadipocytes: Effect on triglyceride accumulations and cell proliferarion (2007) Biocell, 31, pp. 237-245
  • Baker, M.A., Cerniglia, G.J., Zaman, A., Microtiter plate assay for measurement of glutathione and glutathione disulfide in large number of biological samples (1990) Anal. Biochem, 190, pp. 360-365
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem, 72, pp. 248-254
  • Kaufman, P.B., Wu, W., Kim, D., Cseke, L.J., (1995) Handbook of Molecular and Cellular Methods In Biology and Medicine, pp. 2-25. , 1st ed.; CRC Press: Boca Raton, FL, USA
  • McCord, J.M., Fridovich, I., Superoxide dismutase. An enzymatic function for erythrocuprein (1969) J. Biol. Chem, 224, pp. 6049-6055
  • Arthur, J.R., Boyne, R., Superoxide dismutase and glutathione peroxidase activities in neutrophiles from selenium deficient and copper deficient cattle (1985) Life Sci, 36, pp. 1569-1575
  • Paglia, D.E., Valentine, W.N., Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase (1967) J. Lab. Clin. Med, 70, pp. 158-169
  • (2003) Analytical Software, Statistix 8, , McGraw-Hill/Irwin: Tallahases, FL, USA

Citas:

---------- APA ----------
Calzadilla, P., Sapochnik, D., Cosentino, S., Diz, V., Dicelio, L., Calvo, J.C. & Guerra, L.N. (2011) . N-acetylcysteine reduces markers of differentiation in 3T3-L1 adipocytes. International Journal of Molecular Sciences, 12(10), 6936-6951.
http://dx.doi.org/10.3390/ijms12106936
---------- CHICAGO ----------
Calzadilla, P., Sapochnik, D., Cosentino, S., Diz, V., Dicelio, L., Calvo, J.C., et al. "N-acetylcysteine reduces markers of differentiation in 3T3-L1 adipocytes" . International Journal of Molecular Sciences 12, no. 10 (2011) : 6936-6951.
http://dx.doi.org/10.3390/ijms12106936
---------- MLA ----------
Calzadilla, P., Sapochnik, D., Cosentino, S., Diz, V., Dicelio, L., Calvo, J.C., et al. "N-acetylcysteine reduces markers of differentiation in 3T3-L1 adipocytes" . International Journal of Molecular Sciences, vol. 12, no. 10, 2011, pp. 6936-6951.
http://dx.doi.org/10.3390/ijms12106936
---------- VANCOUVER ----------
Calzadilla, P., Sapochnik, D., Cosentino, S., Diz, V., Dicelio, L., Calvo, J.C., et al. N-acetylcysteine reduces markers of differentiation in 3T3-L1 adipocytes. Int. J. Mol. Sci. 2011;12(10):6936-6951.
http://dx.doi.org/10.3390/ijms12106936