Abstract:
We find an estimate for the blow-up time in terms of the initial data for solutions of the equation u t = (u m)xx +u m in ℝ× (0, T) and for solutions of the problem u t = (u m)xx in (0, ∞) × (0, T) with −(u m)x(0, t) = u m(0, t) on (0, T) with m > 1. © 2005, Birkhäuser Verlag Basel/Switzerland.
Referencias:
- Baras, P., Cohen, L., Complete blow-up after Tmax for the solution of a semilinear heat equation (1987) J. Funct. Anal., 71, pp. 142-174
- Chaves, M., Rossi, J.D., Regularity results for the blow-up time as a function of the initial data (2004) Differential Integral Equations, 17 (1112), pp. 1263-1271
- Cortázar, C., Del Pino, M., Elgueta, M., On the blow-up set for ut = Δum + um, m> 1 (1998) Indiana Univ. Math. J, 47 (2), pp. 541-561
- Cortázar, C., Del Pino, M., Elgueta, M., Uniqueness and stability of regional blow-up in a porous-medium equation (2002) Ann. Inst. H. Poincaré, Anal. Non Linéaire, 19 (6), pp. 927-960
- Cortázar, C., Elgueta, M., Venegas, O., On the Blow-up set for ut = (Um)xx, m > 1, with nonlinear boundary conditions (2004) Monatshefte Mathematik, 142 (12), pp. 67-77
- Davila, J., Rossi, J.D., Self-similar solutions of the porous medium equation in a half-space with a nonlinear boundary condition. Existence and symmetry (2004) J. Math. Anal. Appl., 296, pp. 634-649
- Fermanian Kammerer, C., Merle, F., Zaag, H., Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view (2000) Math. Ann, 317, pp. 195-237
- Galaktionov, V.A., Boundary value problems for the nonlinear parabolic equation ut = Δuσ+1 + uβ (1981) Differ. Equations, 17, pp. 551-555
- Galaktionov, V.A., Vazquez, J.L., Continuation of blow-up solutions of nonlinear heat equations in several space dimensions (1997) Comm. Pure Appl. Math, 50, pp. 1-67
- Galaktionov, V.A., Vázquez, J.L., The problem of blow-up in nonlinear parabolic equations (2002) Discrete Contin. Dynam. Systems A, 8, pp. 399-433
- Groisman, P., Rossi, J.D., Zaag, H., On the dependence of the blow-up time with respect to the initial data in a semilinear parabolic problem (2003) Comm. Partial Differential Equations, 28 (34), pp. 737-744
- Herrero, M.A., Velazquez, J.J.L., Generic behaviour of one-dimensional blow up patterns (1992) Ann. Scuola Norm. Sup. Di Pisa XIX, 3, pp. 381-450
- Quittner, P., Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems (2003) Houston J. Math, 29 (3), pp. 757-799
- Samarskii, A., Galaktionov, V.A., Kurdyumov, S.P., Mikhailov, A.P., (1995) Blow-Up in Quasilinear Parabolic Equations, , Walter de Gruyter, Berlin
Citas:
---------- APA ----------
(2006)
. An estimate for the blow-up time in terms of the initial data. Progress in Nonlinear Differential Equations and Their Application, 66, 465-469.
http://dx.doi.org/10.1007/3-7643-7401-2_31---------- CHICAGO ----------
Rossi, J.D.
"An estimate for the blow-up time in terms of the initial data"
. Progress in Nonlinear Differential Equations and Their Application 66
(2006) : 465-469.
http://dx.doi.org/10.1007/3-7643-7401-2_31---------- MLA ----------
Rossi, J.D.
"An estimate for the blow-up time in terms of the initial data"
. Progress in Nonlinear Differential Equations and Their Application, vol. 66, 2006, pp. 465-469.
http://dx.doi.org/10.1007/3-7643-7401-2_31---------- VANCOUVER ----------
Rossi, J.D. An estimate for the blow-up time in terms of the initial data. Prog. Nonlinear Differential Equations Appl. 2006;66:465-469.
http://dx.doi.org/10.1007/3-7643-7401-2_31