Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Regulation of protein synthesis contributes to maintenance of homeostasis and adaptation to environmental changes. mRNA translation is controlled at various levels including initiation, elongation and termination, through post-transcriptional/translational modifications of components of the protein synthesis machinery. Recently, protein and RNA hydroxylation have emerged as important enzymatic modifications of tRNAs, elongation and termination factors, as well as ribosomal proteins. These modifications enable a correct STOP codon recognition, ensuring translational fidelity. Recent studies are starting to show that STOP codon read-through is related to the ability of the cell to cope with different types of stress, such as oxidative and chemical insults, while correlations between defects in hydroxylation of protein synthesis components and STOP codon read-through are beginning to emerge. In this review we will discuss our current knowledge of protein synthesis regulation through hydroxylation of components of the translation machinery, with special focus on STOP codon recognition. We speculate on the possibility that programmed STOP codon read-through, modulated by hydroxylation of components of the protein synthesis machinery, is part of a concerted cellular response to stress. © 2016 Springer International Publishing.

Registro:

Documento: Artículo
Título:Hydroxylation and translational adaptation to stress: Some answers lie beyond the STOP codon
Autor:Katz, M.J.; Gándara, L.; De Lella Ezcurra, A.L.; Wappner, P.
Filiación:Instituto Leloir, Buenos Aires, Argentina
Departamento de Fisiología, Biología Molecular, y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Dioxygenases; Post-translational modifications; Protein synthesis; Translational fidelity; elongation factor; ribosome protein; transfer RNA; dioxygenase; ribosome protein; stop codon; transfer RNA; cell stress; codon; human; hydroxylation; nonhuman; protein synthesis; Review; stop codon; stop codon read through; transcription elongation; transcription termination; translation regulation; bacterium; genetics; hydroxylation; metabolism; oxidative stress; protein processing; stop codon; Bacteria; Codon, Terminator; Dioxygenases; Humans; Hydroxylation; Oxidative Stress; Protein Processing, Post-Translational; Ribosomal Proteins; RNA, Transfer
Año:2016
Volumen:73
Número:9
Página de inicio:1881
Página de fin:1893
DOI: http://dx.doi.org/10.1007/s00018-016-2160-y
Título revista:Cellular and Molecular Life Sciences
Título revista abreviado:Cell. Mol. Life Sci.
ISSN:1420682X
CODEN:CMLSF
CAS:transfer RNA, 9014-25-9; dioxygenase, 37292-90-3; Codon, Terminator; Dioxygenases; Ribosomal Proteins; RNA, Transfer
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1420682X_v73_n9_p1881_Katz

Referencias:

  • Aoyagi, Y., Energy cost of whole-body protein synthesis measured in vivo in chicks (1988) Comp Biochem Physiol A Comp Physiol, 91 (4), pp. 765-768. , 1:STN:280:DyaL1M3gvFOhug%3D%3D 2907443
  • Bock, F.J., Todorova, T.T., Chang, P., RNA regulation by poly(ADP-Ribose) polymerases (2015) Mol Cell, 58 (6), pp. 959-969. , 1:CAS:528:DC%2BC2MXht1SqsbfI 26091344
  • Kang, S.A., MTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin (2013) Science, 341 (6144), p. 1236566. , 23888043 3771538 1:CAS:528:DC%2BC3sXhtFClsLnJ
  • Carroll, A.J., Analysis of the Arabidopsis cytosolic ribosome proteome provides detailed insights into its components and their post-translational modification (2008) Mol Cell Proteomics, 7 (2), pp. 347-369. , 1:CAS:528:DC%2BD1cXitlyltrs%3D 17934214
  • Kearse, M.G., Chen, A.S., Ware, V.C., Expression of ribosomal protein L22e family members in Drosophila melanogaster: rpL22-like is differentially expressed and alternatively spliced (2011) Nucleic Acids Res, 39 (7), pp. 2701-2716. , 1:CAS:528:DC%2BC3MXkvFansr0%3D 21138957 3074143
  • Lopes, A.M., The human RPS4 paralogue on Yq11.223 encodes a structurally conserved ribosomal protein and is preferentially expressed during spermatogenesis (2010) BMC Mol Biol, 11, p. 33. , 20459660 2884166 1:CAS:528:DC%2BC3cXmsFCqsLc%3D
  • Hinnebusch, A.G., The scanning mechanism of eukaryotic translation initiation (2014) Annu Rev Biochem, 83, pp. 779-812. , 1:CAS:528:DC%2BC2cXhtFOhtrbM 24499181
  • Jackson, R.J., Hellen, C.U., Pestova, T.V., The mechanism of eukaryotic translation initiation and principles of its regulation (2010) Nat Rev Mol Cell Biol, 11 (2), pp. 113-127. , 1:CAS:528:DC%2BC3cXps1Cnuw%3D%3D 20094052 4461372
  • Sonenberg, N., Hinnebusch, A.G., Regulation of translation initiation in eukaryotes: Mechanisms and biological targets (2009) Cell, 136 (4), pp. 731-745. , 1:CAS:528:DC%2BD1MXkvFGksbc%3D 19239892 3610329
  • Rodnina, M.V., Beringer, M., Wintermeyer, W., How ribosomes make peptide bonds (2007) Trends Biochem Sci, 32 (1), pp. 20-26. , 1:CAS:528:DC%2BD2sXisVSrug%3D%3D 17157507
  • Nurenberg, E., Tampe, R., Tying up loose ends: Ribosome recycling in eukaryotes and archaea (2013) Trends Biochem Sci, 38 (2), pp. 64-74. , 23266104 1:CAS:528:DC%2BC38XhvVKqu7vO
  • Young, D.J., Rli1/ABCE1 recycles terminating ribosomes and controls translation reinitiation in 3′UTRs in vivo (2015) Cell, 162 (4), pp. 872-884. , 1:CAS:528:DC%2BC2MXhtlCisLjM 26276635
  • Passmore, L.A., The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome (2007) Mol Cell, 26 (1), pp. 41-50. , 1:CAS:528:DC%2BD2sXkvFSrtr0%3D 17434125
  • Kunze, G., The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants (2004) Plant Cell., 16 (12), pp. 3496-3507. , 1:CAS:528:DC%2BD2MXhtVKqsg%3D%3D 15548740 535888
  • Dzialo, M.C., Translational roles of elongation factor 2 protein lysine methylation (2014) J Biol Chem, 289 (44), pp. 30511-30524. , 1:CAS:528:DC%2BC2cXhvVCkur3E 25231983 4215232
  • Odintsova, T.I., Characterization and analysis of posttranslational modifications of the human large cytoplasmic ribosomal subunit proteins by mass spectrometry and Edman sequencing (2003) J Protein Chem, 22 (3), pp. 249-258. , 1:CAS:528:DC%2BD3sXmtVGrsLs%3D 12962325
  • Arnold, R.J., Reilly, J.P., Analysis of methylation and acetylation in E. coli ribosomal proteins (2002) Methods Mol Biol, 194, pp. 205-210. , 1:CAS:528:DC%2BD38XjvVKnurw%3D 12029835
  • Lee, S.W., Direct mass spectrometric analysis of intact proteins of the yeast large ribosomal subunit using capillary LC/FTICR (2002) Proc Natl Acad Sci USA, 99 (9), pp. 5942-5947. , 1:CAS:528:DC%2BD38XjslWgtbk%3D 11983894 122881
  • Cammarano, P., Characterization of unfolded and compact ribosomal subunits from plants and their relationship to those of lower and higher animals: Evidence for physicochemical heterogeneity among eucaryotic ribosomes (1972) Biochim Biophys Acta, 281 (4), pp. 571-596. , 1:CAS:528:DyaE3sXlsVGluw%3D%3D 4631639
  • Louie, D.F., Mass spectrometric analysis of 40S ribosomal proteins from Rat-1 fibroblasts (1996) J Biol Chem, 271 (45), pp. 28189-28198. , 1:CAS:528:DyaK28XmvVWksLo%3D 8910435
  • Vladimirov, S.N., Characterization of the human small-ribosomal-subunit proteins by N-terminal and internal sequencing, and mass spectrometry (1996) Eur J Biochem, 239 (1), pp. 144-149. , 1:CAS:528:DyaK28XksVGlsr8%3D 8706699
  • Ban, N., A new system for naming ribosomal proteins (2014) Curr Opin Struct Biol, 24, pp. 165-169. , 1:CAS:528:DC%2BC2cXitlCju7w%3D 24524803 4358319
  • Ruvinsky, I., Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis (2005) Genes Dev, 19 (18), pp. 2199-2211. , 1:CAS:528:DC%2BD2MXhtVGlsrzF 16166381 1221890
  • Fu, Y., The AlkB domain of mammalian ABH8 catalyzes hydroxylation of 5-methoxycarbonylmethyluridine at the wobble position of tRNA (2010) Angew Chem Int Ed Engl, 49 (47), pp. 8885-8888. , 1:CAS:528:DC%2BC3cXhsVWmsbfK 20583019 3134247
  • Kato, M., Crystal structure of a novel JmjC-domain-containing protein, TYW5, involved in tRNA modification (2011) Nucleic Acids Res, 39 (4), pp. 1576-1585. , 1:CAS:528:DC%2BC3MXis1CitLo%3D 20972222 3045595
  • Scotti, J.S., Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation (2014) Proc Natl Acad Sci USA, 111 (37), pp. 13331-13336. , 1:CAS:528:DC%2BC2cXhsVGntbrP 25197067 4169948
  • Feng, T., Optimal translational termination requires C4 lysyl hydroxylation of eRF1 (2014) Mol Cell, 53 (4), pp. 645-654. , 1:CAS:528:DC%2BC2cXhs1ahurw%3D 24486019 3991326
  • Ge, W., Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans (2012) Nat Chem Biol, 8 (12), pp. 960-962. , 1:CAS:528:DC%2BC38XhsFOmtLrN 23103944
  • Van Staalduinen, L.M., Novakowski, S.K., Jia, Z., Structure and functional analysis of YcfD, a novel 2-oxoglutarate/Fe(2)(+)-dependent oxygenase involved in translational regulation in Escherichia coli (2014) J Mol Biol, 426 (9), pp. 1898-1910. , 24530688 1:CAS:528:DC%2BC2cXjtlWjtbk%3D
  • Loenarz, C., Schofield, C.J., Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases (2011) Trends Biochem Sci, 36 (1), pp. 7-18. , 1:CAS:528:DC%2BC3MXksFKguw%3D%3D 20728359
  • Markolovic, S., Wilkins, S.E., Schofield, C.J., Protein hydroxylation catalyzed by 2-oxoglutarate-dependent oxygenases (2015) J Biol Chem, 290 (34), pp. 20712-20722. , 1:CAS:528:DC%2BC2MXhtlOrt7%2FO 26152730 4543633
  • Bugg, T.D., Oxygenases: Mechanisms and structural motifs for O(2) activation (2001) Curr Opin Chem Biol, 5 (5), pp. 550-555. , 1:CAS:528:DC%2BD3MXntV2gtb4%3D 11578928
  • Mittal, N., Unique posttranslational modifications in eukaryotic translation factors and their roles in protozoan parasite viability and pathogenesis (2013) Mol Biochem Parasitol, 187 (1), pp. 21-31. , 1:CAS:528:DC%2BC3sXhslCitbY%3D 23201129
  • Dever, T.E., Green, R., The elongation, termination, and recycling phases of translation in eukaryotes (2012) Cold Spring Harb Perspect Biol, 4 (7). , 22751155 3385960 1:CAS:528:DC%2BC3sXjt1emsr4%3D
  • Gupta, N., Whole proteome analysis of post-translational modifications: Applications of mass-spectrometry for proteogenomic annotation (2007) Genome Res, 17 (9), pp. 1362-1377. , 1:CAS:528:DC%2BD2sXhtValu7bO 17690205 1950905
  • Blaha, G., Stanley, R.E., Steitz, T.A., Formation of the first peptide bond: The structure of EF-P bound to the 70S ribosome (2009) Science, 325 (5943), pp. 966-970. , 1:CAS:528:DC%2BD1MXhtValsrjF 19696344 3296453
  • Pavlov, M.Y., Slow peptide bond formation by proline and other N-alkylamino acids in translation (2009) Proc Natl Acad Sci USA, 106 (1), pp. 50-54. , 1:CAS:528:DC%2BD1MXltF2jtw%3D%3D 19104062 2629218
  • Ude, S., Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches (2013) Science, 339 (6115), pp. 82-85. , 1:CAS:528:DC%2BC3sXnt1yj 23239623
  • Doerfel, L.K., EF-P is essential for rapid synthesis of proteins containing consecutive proline residues (2013) Science, 339 (6115), pp. 85-88. , 1:CAS:528:DC%2BC3sXnt1yh 23239624
  • Roy, H., The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-beta-lysine (2011) Nat Chem Biol, 7 (10), pp. 667-669. , 1:CAS:528:DC%2BC3MXhtVWmtbzN 21841797 3177975
  • Peil, L., Lys34 of translation elongation factor EF-P is hydroxylated by YfcM (2012) Nat Chem Biol, 8 (8), pp. 695-697. , 1:CAS:528:DC%2BC38Xos12jt7c%3D 22706199
  • Navarre, W.W., PoxA, yjeK, and elongation factor P coordinately modulate virulence and drug resistance in Salmonella enterica (2010) Mol Cell, 39 (2), pp. 209-221. , 1:CAS:528:DC%2BC3cXpsVCnsb8%3D 20670890 2913146
  • Bullwinkle, T.J., (R)-Beta-lysine-modified elongation factor P functions in translation elongation (2013) J Biol Chem, 288 (6), pp. 4416-4423. , 1:CAS:528:DC%2BC3sXit1KksL4%3D 23277358 3567691
  • Kemper, W.M., Berry, K.W., Merrick, W.C., Purification and properties of rabbit reticulocyte protein synthesis initiation factors M2Balpha and M2Bbeta (1976) J Biol Chem, 251 (18), pp. 5551-5557. , 1:CAS:528:DyaE28XlsFGgsLs%3D 965377
  • Gregio, A.P., EIF5A has a function in the elongation step of translation in yeast (2009) Biochem Biophys Res Commun, 380 (4), pp. 785-790. , 1:CAS:528:DC%2BD1MXis1ejsLc%3D 19338753
  • Kang, H.A., Hershey, J.W., Effect of initiation factor eIF-5A depletion on protein synthesis and proliferation of Saccharomyces cerevisiae (1994) J Biol Chem, 269 (6), pp. 3934-3940. , 1:CAS:528:DyaK2cXhvVKqtbk%3D 8307948
  • Saini, P., Hypusine-containing protein eIF5A promotes translation elongation (2009) Nature, 459 (7243), pp. 118-121. , 1:CAS:528:DC%2BD1MXlsF2lur0%3D 19424157 3140696
  • Dever, T.E., Gutierrez, E., Shin, B.S., The hypusine-containing translation factor eIF5A (2014) Crit Rev Biochem Mol Biol, 49 (5), pp. 413-425. , 1:CAS:528:DC%2BC2cXhs12kurfP 25029904 4183722
  • Gutierrez, E., EIF5A promotes translation of polyproline motifs (2013) Mol Cell, 51 (1), pp. 35-45. , 1:CAS:528:DC%2BC3sXos12lsrc%3D 23727016 3744875
  • Park, M.H., Joe, Y.A., Kang, K.R., Deoxyhypusine synthase activity is essential for cell viability in the yeast Saccharomyces cerevisiae (1998) J Biol Chem, 273 (3), pp. 1677-1683. , 1:CAS:528:DyaK1cXktFGnsg%3D%3D 9430712
  • Schrader, R., Temperature-sensitive eIF5A mutant accumulates transcripts targeted to the nonsense-mediated decay pathway (2006) J Biol Chem, 281 (46), pp. 35336-35346. , 1:CAS:528:DC%2BD28XhtF2gur%2FO 16987817
  • Park, J.H., Molecular cloning, expression, and structural prediction of deoxyhypusine hydroxylase: A HEAT-repeat-containing metalloenzyme (2006) Proc Natl Acad Sci USA, 103 (1), pp. 51-56. , 1:CAS:528:DC%2BD28Xms12jsg%3D%3D 16371467 1324997
  • Patel, P.H., The Drosophila deoxyhypusine hydroxylase homologue nero and its target eIF5A are required for cell growth and the regulation of autophagy (2009) J Cell Biol, 185 (7), pp. 1181-1194. , 1:CAS:528:DC%2BD1MXot1aqt7s%3D 19546244 2712966
  • Sievert, H., A novel mouse model for inhibition of DOHH-mediated hypusine modification reveals a crucial function in embryonic development, proliferation and oncogenic transformation (2014) Dis Model Mech, 7 (8), pp. 963-976. , 24832488 4107325 1:CAS:528:DC%2BC2cXhsleqtb7L
  • Taylor, D., Cryo-EM structure of the mammalian eukaryotic release factor eRF1-eRF3-associated termination complex (2012) Proc Natl Acad Sci USA, 109 (45), pp. 18413-18418. , 1:CAS:528:DC%2BC38XhslymtbvJ 23091004 3494903
  • Carlson, B.A., Transfer RNA modification status influences retroviral ribosomal frameshifting (1999) Virology, 255 (1), pp. 2-8. , 1:CAS:528:DyaK1MXhtlChsbg%3D 10049815
  • Varani, G., McClain, W.H., The G x U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems (2000) EMBO Rep, 1 (1), pp. 18-23. , 1:CAS:528:DC%2BD3cXmtl2gtr0%3D 11256617 1083677
  • Gorgoni, B., Controlling translation elongation efficiency: tRNA regulation of ribosome flux on the mRNA (2014) Biochem Soc Trans, 42 (1), pp. 160-165. , 1:CAS:528:DC%2BC2cXhtVOgt78%3D 24450645
  • Ogle, J.M., Recognition of cognate transfer RNA by the 30S ribosomal subunit (2001) Science, 292 (5518), pp. 897-902. , 1:CAS:528:DC%2BD3MXjsVSrsbw%3D 11340196
  • Sharma, D., Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome (2007) J Mol Biol, 374 (4), pp. 1065-1076. , 1:CAS:528:DC%2BD2sXht1ykurnN 17967466 2200631
  • Van Den Born, E., ALKBH8-mediated formation of a novel diastereomeric pair of wobble nucleosides in mammalian tRNA (2011) Nat Commun, 2, p. 172. , 21285950 1:CAS:528:DC%2BC3MXltFOnurk%3D
  • Kawakami, M., Chemical structure of a new modified nucleoside located in the anticodon of Bombyx mori glycine tRNA2 (1988) J Biochem, 104 (1), pp. 108-111. , 1:CAS:528:DyaL1cXlt1Cmt7o%3D 3220822
  • Kawakami, M., Abnormal codon recognition of glycyl-tRNA from the posterior silk glands of Bombyx mori (1980) J Biochem, 88 (4), pp. 1151-1157. , 1:CAS:528:DyaL3cXmtlejs70%3D 6778857
  • Konevega, A.L., Purine bases at position 37 of tRNA stabilize codon-anticodon interaction in the ribosomal A site by stacking and Mg2+-dependent interactions (2004) RNA, 10 (1), pp. 90-101. , 1:CAS:528:DC%2BD2cXhsFWntQ%3D%3D 14681588 1370521
  • Noma, A., Expanding role of the jumonji C domain as an RNA hydroxylase (2010) J Biol Chem, 285 (45), pp. 34503-34507. , 1:CAS:528:DC%2BC3cXhtlGktbzM 20739293 2966065
  • Chowdhury, R., Ribosomal oxygenases are structurally conserved from prokaryotes to humans (2014) Nature, 510 (7505), pp. 422-426. , 1:CAS:528:DC%2BC2cXpslGitLk%3D 24814345 4066111
  • Suzuki, C., Identification of Myc-associated protein with JmjC domain as a novel therapeutic target oncogene for lung cancer (2007) Mol Cancer Ther, 6 (2), pp. 542-551. , 1:CAS:528:DC%2BD2sXhvVWrs74%3D 17308053
  • Teye, K., Increased expression of a Myc target gene Mina53 in human colon cancer (2004) Am J Pathol, 164 (1), pp. 205-216. , 1:CAS:528:DC%2BD2cXlsVCnsw%3D%3D 14695334 1602225
  • Wang, C., Structure of the JmjC domain-containing protein NO66 complexed with ribosomal protein Rpl8 (2015) Acta Crystallogr D Biol Crystallogr, 71, pp. 1955-1964. , 1:CAS:528:DC%2BC2MXhsVOlsbfP 26327385 4556315
  • Yanshina, D.D., Hydroxylated histidine of human ribosomal protein uL2 is involved in maintaining the local structure of 28S rRNA in the ribosomal peptidyl transferase center (2015) FEBS J, 282 (8), pp. 1554-1566. , 1:CAS:528:DC%2BC2MXmsFSnt7o%3D 25702831
  • Singleton, R.S., OGFOD1 catalyzes prolyl hydroxylation of RPS23 and is involved in translation control and stress granule formation (2014) Proc Natl Acad Sci USA, 111 (11), pp. 4031-4036. , 1:CAS:528:DC%2BC2cXjtl2gsbk%3D 24550447 3964040
  • Loenarz, C., Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy (2014) Proc Natl Acad Sci USA, 111 (11), pp. 4019-4024. , 1:CAS:528:DC%2BC2cXjtl2is7c%3D 24550462 3964080
  • Katz, M.J., Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth (2014) Proc Natl Acad Sci USA, 111 (11), pp. 4025-4030. , 1:CAS:528:DC%2BC2cXjtl2ktL4%3D 24550463 3964085
  • Keeling, K.M., Tpa1p is part of an mRNP complex that influences translation termination, mRNA deadenylation, and mRNA turnover in Saccharomyces cerevisiae (2006) Mol Cell Biol, 26 (14), pp. 5237-5248. , 1:CAS:528:DC%2BD28XmvFyhtr0%3D 16809762 1592710
  • Torabi, N., Kruglyak, L., Genetic basis of hidden phenotypic variation revealed by increased translational readthrough in yeast (2012) PLoS Genet, 8 (3). , 1:CAS:528:DC%2BC38XjslOltrY%3D 22396662 3291563
  • Namy, O., Duchateau-Nguyen, G., Rousset, J.P., Translational readthrough of the PDE2 stop codon modulates cAMP levels in Saccharomyces cerevisiae (2002) Mol Microbiol, 43 (3), pp. 641-652. , 1:CAS:528:DC%2BD38XitlWhtbo%3D 11929521
  • Freitag, J., Ast, J., Bolker, M., Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi (2012) Nature, 485 (7399), pp. 522-525. , 1:CAS:528:DC%2BC38Xntlyrtbw%3D 22622582
  • Touriol, C., Generation of protein isoform diversity by alternative initiation of translation at non-AUG codons (2003) Biol Cell, 95 (3-4), pp. 169-178. , 1:CAS:528:DC%2BD3sXlsVWqtrY%3D 12867081
  • Casey, J.L., Gerin, J.L., Hepatitis D virus RNA editing: Specific modification of adenosine in the antigenomic RNA (1995) J Virol, 69 (12), pp. 7593-7600. , 1:CAS:528:DyaK2MXptlOktL0%3D 7494266 189698
  • Jacks, T., Varmus, H.E., Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting (1985) Science, 230 (4731), pp. 1237-1242. , 1:CAS:528:DyaL28Xks1Cksw%3D%3D 2416054
  • Weiner, A.M., Weber, K., Natural read-through at the UGA termination signal of Q-beta coat protein cistron (1971) Nat New Biol, 234 (50), pp. 206-209. , 1:CAS:528:DyaE38XpsF2gug%3D%3D 5288807
  • Geller, A.I., Rich, A., A UGA termination suppression tRNATrp active in rabbit reticulocytes (1980) Nature, 283 (5742), pp. 41-46. , 1:CAS:528:DyaL3cXhsF2isLs%3D 7350525
  • Yamaguchi, Y., L-MPZ, a novel isoform of myelin P0, is produced by stop codon readthrough (2012) J Biol Chem, 287 (21), pp. 17765-17776. , 1:CAS:528:DC%2BC38XntFSmsrc%3D 22457349 3366853
  • Beier, H., Grimm, M., Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs (2001) Nucleic Acids Res, 29 (23), pp. 4767-4782. , 1:CAS:528:DC%2BD3MXptV2rs78%3D 11726686 96686
  • Stiebler, A.C., Ribosomal readthrough at a short UGA stop codon context triggers dual localization of metabolic enzymes in Fungi and animals (2014) PLoS Genet, 10 (10). , 25340584 4207609 1:CAS:528:DC%2BC2cXitVyitrzO
  • Jungreis, I., Evidence of abundant stop codon readthrough in Drosophila and other metazoa (2011) Genome Res, 21 (12), pp. 2096-2113. , 1:CAS:528:DC%2BC3MXhs1WlurzN 21994247 3227100
  • Brown, C.M., The translational termination signal database (1993) Nucleic Acids Res, 21 (13), pp. 3119-3123. , 1:CAS:528:DyaK3sXkvV2isLo%3D 8332534 309741
  • Tate, W.P., Translational termination efficiency in both bacteria and mammals is regulated by the base following the stop codon (1995) Biochem Cell Biol, 73 (11-12), pp. 1095-1103. , 1:CAS:528:DyaK28Xit1Kksbo%3D 8722026
  • Namy, O., Hatin, I., Rousset, J.P., Impact of the six nucleotides downstream of the stop codon on translation termination (2001) EMBO Rep, 2 (9), pp. 787-793. , 1:CAS:528:DC%2BD3MXns1Wgtbw%3D 11520858 1084031
  • Berry, M.J., Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region (1991) Nature, 353 (6341), pp. 273-276. , 1:CAS:528:DyaK3MXmtVSiurw%3D 1832744
  • Kossinova, O., A novel insight into the mechanism of mammalian selenoprotein synthesis (2013) RNA, 19 (8), pp. 1147-1158. , 1:CAS:528:DC%2BC3sXht1SntbzP 23788723 3708534
  • Jalajakumari, M.B., Genes for biosynthesis and assembly of CS3 pili of CFA/II enterotoxigenic Escherichia coli: Novel regulation of pilus production by bypassing an amber codon (1989) Mol Microbiol, 3 (12), pp. 1685-1695. , 1:CAS:528:DyaK3cXksFehtrc%3D 2576094
  • Schueren, F., Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals (2014) Elife, 3. , 25247702 1:CAS:528:DC%2BC2cXitFWgs77O
  • Hofstetter, H., Monstein, H.J., Weissmann, C., The readthrough protein A1 is essential for the formation of viable Q beta particles (1974) Biochim Biophys Acta, 374 (2), pp. 238-251. , 1:CAS:528:DyaE2MXltlShuw%3D%3D 4611493
  • Pelham, H.R., Leaky UAG termination codon in tobacco mosaic virus RNA (1978) Nature, 272 (5652), pp. 469-471. , 1:CAS:528:DyaE1cXksFCqtr4%3D 634374
  • Philipson, L., Translation of MuLV and MSV RNAs in nuclease-treated reticulocyte extracts: Enhancement of the gag-pol polypeptide with yeast suppressor tRNA (1978) Cell, 13 (1), pp. 189-199. , 1:CAS:528:DyaE1cXhtFKnt7w%3D 202399
  • Yoshinaka, Y., Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon (1985) Proc Natl Acad Sci USA, 82 (6), pp. 1618-1622. , 1:CAS:528:DyaL2MXks1Ogurw%3D 3885215 397323
  • Boylan, M., Coleman, D.C., Smyth, C.J., Molecular cloning and characterization of the genetic determinant encoding CS3 fimbriae of enterotoxigenic Escherichia coli (1987) Microb Pathog, 2 (3), pp. 195-209. , 1:CAS:528:DyaL2sXhvFSgsrg%3D 2907083
  • Lin, M.F., Revisiting the protein-coding gene catalog of Drosophila melanogaster using 12 fly genomes (2007) Genome Res, 17 (12), pp. 1823-1836. , 1:CAS:528:DC%2BD2sXhsVGhsLnP 17989253 2099591
  • Dunn, J.G., Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster (2013) Elife, 2. , 24302569 3840789 1:CAS:528:DC%2BC2cXmvFaitbw%3D
  • Xue, F., Cooley, L., Kelch encodes a component of intercellular bridges in Drosophila egg chambers (1993) Cell, 72 (5), pp. 681-693. , 1:CAS:528:DyaK3sXitlSlt7s%3D 8453663
  • Steneberg, P., Translational readthrough in the hdc mRNA generates a novel branching inhibitor in the drosophila trachea (1998) Genes Dev, 12 (7), pp. 956-967. , 1:CAS:528:DyaK1cXislynur0%3D 9531534 316679
  • Bergstrom, D.E., Regulatory autonomy and molecular characterization of the Drosophila out at first gene (1995) Genetics, 139 (3), pp. 1331-1346. , 1:CAS:528:DyaK28XhsFSrur8%3D 7768442 1206460
  • Klagges, B.R., Invertebrate synapsins: A single gene codes for several isoforms in Drosophila (1996) J Neurosci, 16 (10), pp. 3154-3165. , 1:CAS:528:DyaK28XivVagtL0%3D 8627354
  • Samuels, M.E., Schedl, P., Cline, T.W., The complex set of late transcripts from the Drosophila sex determination gene sex-lethal encodes multiple related polypeptides (1991) Mol Cell Biol, 11 (7), pp. 3584-3602. , 1:CAS:528:DyaK38Xht1ags7w%3D 1710769 361104
  • Samson, M.L., Lisbin, M.J., White, K., Two distinct temperature-sensitive alleles at the elav locus of Drosophila are suppressed nonsense mutations of the same tryptophan codon (1995) Genetics, 141 (3), pp. 1101-1111. , 1:CAS:528:DyaK28Xht1Clt7Y%3D 8582616 1206833
  • Chao, A.T., Mutations in eukaryotic release factors 1 and 3 act as general nonsense suppressors in Drosophila (2003) Genetics, 165 (2), pp. 601-612. , 1:CAS:528:DC%2BD3sXpt1Olsrg%3D 14573473 1462801
  • Chittum, H.S., Rabbit beta-globin is extended beyond its UGA stop codon by multiple suppressions and translational reading gaps (1998) Biochemistry, 37 (31), pp. 10866-10870. , 1:CAS:528:DyaK1cXkvVymtb0%3D 9692979
  • Eswarappa, S.M., Programmed translational readthrough generates antiangiogenic VEGF-Ax (2014) Cell, 157 (7), pp. 1605-1618. , 1:CAS:528:DC%2BC2cXhtVCisrbL 24949972 4113015
  • Carmeliet, P., Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele (1996) Nature, 380 (6573), pp. 435-439. , 1:CAS:528:DyaK28XitVKqtLg%3D 8602241
  • Demirci, H., The central role of protein S12 in organizing the structure of the decoding site of the ribosome (2013) RNA, 19 (12), pp. 1791-1801. , 1:CAS:528:DC%2BC3sXhvVKjsLnE 24152548 3884664
  • Ogle, J.M., Selection of tRNA by the ribosome requires a transition from an open to a closed form (2002) Cell, 111 (5), pp. 721-732. , 1:CAS:528:DC%2BD38XptlGrurw%3D 12464183
  • Demirci, H., A structural basis for streptomycin-induced misreading of the genetic code (2013) Nat Commun, 4, p. 1355. , 23322043 3552334 1:CAS:528:DC%2BC3sXptFyjsrw%3D
  • O'Connor, M., Genetic probes of ribosomal RNA function (1995) Biochem Cell Biol, 73 (11-12), pp. 859-868. , 8722001
  • Funatsu, G., Wittmann, H.G., Ribosomal proteins. 33. Location of amino-acid replacements in protein S12 isolated from Escherichia coli mutants resistant to streptomycin (1972) J Mol Biol, 68 (3), pp. 547-550. , 1:CAS:528:DyaE38XkvFyjtLg%3D 4560854
  • Alksne, L.E., An accuracy center in the ribosome conserved over 2 billion years (1993) Proc Natl Acad Sci USA, 90 (20), pp. 9538-9541. , 1:CAS:528:DyaK3sXms1Cktb4%3D 8415737 47604
  • Gorini, L., Kataja, E., Streptomycin-induced oversuppression in E. coli (1964) Proc Natl Acad Sci USA, 51, pp. 995-1001. , 1:STN:280:DyaF2M%2FitVSmsg%3D%3D 14215657 300200
  • Chandramouli, P., Structure of the mammalian 80S ribosome at 8.7 A resolution (2008) Structure, 16 (4), pp. 535-548. , 1:CAS:528:DC%2BD1cXktlGgsbg%3D 18400176 2775484
  • Bonetti, B., The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae (1995) J Mol Biol, 251 (3), pp. 334-345. , 1:CAS:528:DyaK2MXns1eiurw%3D 7650736
  • Selmer, M., Structure of the 70S ribosome complexed with mRNA and tRNA (2006) Science, 313 (5795), pp. 1935-1942. , 1:CAS:528:DC%2BD28XhtVSnsrbO 16959973
  • Noeske, J., High-resolution structure of the Escherichia coli ribosome (2015) Nat Struct Mol Biol, 22 (4), pp. 336-341. , 10.1038/nsmb.2994 1:CAS:528:DC%2BC2MXksF2hu78%3D 25775265 4429131
  • Nakamura, Y., Ito, K., TRNA mimicry in translation termination and beyond (2011) Wiley Interdiscip Rev RNA, 2 (5), pp. 647-668. , 1:CAS:528:DC%2BC3MXhtFCjt7bJ 21823227
  • Chavatte, L., The invariant uridine of stop codons contacts the conserved NIKSR loop of human eRF1 in the ribosome (2002) EMBO J, 21 (19), pp. 5302-5311. , 1:CAS:528:DC%2BD38Xns1Cms70%3D 12356746 129024
  • Bulygin, K.N., Three distinct peptides from the N domain of translation termination factor eRF1 surround stop codon in the ribosome (2010) RNA, 16 (10), pp. 1902-1914. , 1:CAS:528:DC%2BC3cXht1KjtbjO 20688868 2941099
  • Brown, A., Structural basis for stop codon recognition in eukaryotes (2015) Nature, 524 (7566), pp. 493-496. , 1:CAS:528:DC%2BC2MXht12jtb7F 26245381 4591471
  • Laplante, M., Sabatini, D.M., MTOR signaling in growth control and disease (2012) Cell, 149 (2), pp. 274-293. , 1:CAS:528:DC%2BC38Xls1eguro%3D 22500797 3331679
  • Vannuvel, K., Functional and morphological impact of ER stress on mitochondria (2013) J Cell Physiol, 228 (9), pp. 1802-1818. , 1:CAS:528:DC%2BC3sXot1eru7o%3D 23629871
  • Pimentel, J., Boccaccio, G.L., Translation and silencing in RNA granules: A tale of sand grains (2014) Front Mol Neurosci, 7, p. 68. , 25100944 4107967 1:CAS:528:DC%2BC2cXitVSmu7vO
  • Thomas, M.G., RNA granules: The good, the bad and the ugly (2011) Cell Signal, 23 (2), pp. 324-334. , 1:CAS:528:DC%2BC3cXhsFags7zM 20813183 3001194
  • Bar-Peled, L., Sabatini, D.M., Regulation of mTORC1 by amino acids (2014) Trends Cell Biol, 24 (7), pp. 400-406. , 1:CAS:528:DC%2BC2cXltl2gsbs%3D 24698685 4074565
  • Meyuhas, O., Physiological roles of ribosomal protein S6: One of its kind (2008) Int Rev Cell Mol Biol, 268, pp. 1-37. , 1:CAS:528:DC%2BD1cXhtFyht7zM 18703402
  • Browne, G.J., Proud, C.G., A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin (2004) Mol Cell Biol, 24 (7), pp. 2986-2997. , 1:CAS:528:DC%2BD2cXis1emt74%3D 15024086 371112
  • Keegan, L.P., Gallo, A., O'Connell, M.A., The many roles of an RNA editor (2001) Nat Rev Genet, 2 (11), pp. 869-878. , 1:CAS:528:DC%2BD38Xmt1Wgtr0%3D 11715042
  • Yamasaki, S., Anderson, P., Reprogramming mRNA translation during stress (2008) Curr Opin Cell Biol, 20 (2), pp. 222-226. , 1:CAS:528:DC%2BD1cXks1Gnu7s%3D 18356035 2841789
  • Gerashchenko, M.V., Lobanov, A.V., Gladyshev, V.N., Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress (2012) Proc Natl Acad Sci USA, 109 (43), pp. 17394-17399. , 1:CAS:528:DC%2BC38XhvVSltL3E 23045643 3491468
  • Ingolia, N.T., Lareau, L.F., Weissman, J.S., Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes (2011) Cell, 147 (4), pp. 789-802. , 1:CAS:528:DC%2BC3MXhsVKgsLnJ 22056041 3225288
  • Oren, Y.S., The unfolded protein response affects readthrough of premature termination codons (2014) EMBO Mol Med, 6 (5), pp. 685-701. , 1:CAS:528:DC%2BC2cXnsVSlt7s%3D 24705877 4023889
  • Sideri, T.C., Ribosome-associated peroxiredoxins suppress oxidative stress-induced de novo formation of the [PSI+] prion in yeast (2010) Proc Natl Acad Sci USA, 107 (14), pp. 6394-6399. , 1:CAS:528:DC%2BC3cXkslynurw%3D 20308573 2851942
  • Eaglestone, S.S., Cox, B.S., Tuite, M.F., Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism (1999) EMBO J, 18 (7), pp. 1974-1981. , 1:CAS:528:DyaK1MXivVyks7Y%3D 10202160 1171282
  • True, H.L., Berlin, I., Lindquist, S.L., Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits (2004) Nature, 431 (7005), pp. 184-187. , 1:CAS:528:DC%2BD2cXntlGks7k%3D 15311209
  • Ivan, M., HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing (2001) Science, 292 (5516), pp. 464-468. , 1:CAS:528:DC%2BD3MXjtVentbw%3D 11292862
  • Jaakkola, P., Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation (2001) Science, 292 (5516), pp. 468-472. , 1:CAS:528:DC%2BD3MXjtVentb0%3D 11292861
  • Lando, D., FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor (2002) Genes Dev, 16 (12), pp. 1466-1471. , 1:CAS:528:DC%2BD38XltVGmtLw%3D 12080085 186346
  • Bruick, R.K., McKnight, S.L., A conserved family of prolyl-4-hydroxylases that modify HIF (2001) Science, 294 (5545), pp. 1337-1340. , 1:CAS:528:DC%2BD3MXotlKmtbo%3D 11598268
  • Ratcliffe, P.J., Oxygen sensing and hypoxia signalling pathways in animals: The implications of physiology for cancer (2013) J Physiol, 591, pp. 2027-2042. , 1:CAS:528:DC%2BC3sXotl2kt70%3D 23401619 3634517
  • Epstein, A.C., C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation (2001) Cell, 107 (1), pp. 43-54. , 1:CAS:528:DC%2BD3MXnsFOntL0%3D 11595184
  • Karijolich, J., Yu, Y.T., Therapeutic suppression of premature termination codons: Mechanisms and clinical considerations (review) (2014) Int J Mol Med, 34 (2), pp. 355-362. , 1:CAS:528:DC%2BC2cXhsFeltb3L 24939317 4094583
  • Keeling, K.M., Bedwell, D.M., Suppression of nonsense mutations as a therapeutic approach to treat genetic diseases (2011) Wiley Interdiscip Rev RNA, 2 (6), pp. 837-852. , 1:CAS:528:DC%2BC3MXhtlyrsrjO 21976286 3188951

Citas:

---------- APA ----------
Katz, M.J., Gándara, L., De Lella Ezcurra, A.L. & Wappner, P. (2016) . Hydroxylation and translational adaptation to stress: Some answers lie beyond the STOP codon. Cellular and Molecular Life Sciences, 73(9), 1881-1893.
http://dx.doi.org/10.1007/s00018-016-2160-y
---------- CHICAGO ----------
Katz, M.J., Gándara, L., De Lella Ezcurra, A.L., Wappner, P. "Hydroxylation and translational adaptation to stress: Some answers lie beyond the STOP codon" . Cellular and Molecular Life Sciences 73, no. 9 (2016) : 1881-1893.
http://dx.doi.org/10.1007/s00018-016-2160-y
---------- MLA ----------
Katz, M.J., Gándara, L., De Lella Ezcurra, A.L., Wappner, P. "Hydroxylation and translational adaptation to stress: Some answers lie beyond the STOP codon" . Cellular and Molecular Life Sciences, vol. 73, no. 9, 2016, pp. 1881-1893.
http://dx.doi.org/10.1007/s00018-016-2160-y
---------- VANCOUVER ----------
Katz, M.J., Gándara, L., De Lella Ezcurra, A.L., Wappner, P. Hydroxylation and translational adaptation to stress: Some answers lie beyond the STOP codon. Cell. Mol. Life Sci. 2016;73(9):1881-1893.
http://dx.doi.org/10.1007/s00018-016-2160-y