Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work; we investigated the differential interaction of amphiphilic antimicrobial peptides with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid structures by means of extensive molecular dynamics simulations. By using a coarse-grained (CG) model within the MARTINI force field; we simulated the peptide–lipid system from three different initial configurations: (a) peptides in water in the presence of a pre-equilibrated lipid bilayer; (b) peptides inside the hydrophobic core of the membrane; and (c) random configurations that allow self-assembled molecular structures. This last approach allowed us to sample the structural space of the systems and consider cooperative effects. The peptides used in our simulations are aurein 1.2 and maculatin 1.1; two well-known antimicrobial peptides from the Australian tree frogs; and molecules that present different membrane-perturbing behaviors. Our results showed differential behaviors for each type of peptide seen in a different organization that could guide a molecular interpretation of the experimental data. While both peptides are capable of forming membrane aggregates; the aurein 1.2 ones have a pore-like structure and exhibit a higher level of organization than those conformed by maculatin 1.1. Furthermore; maculatin 1.1 has a strong tendency to form clusters and induce curvature at low peptide–lipid ratios. The exploration of the possible lipid–peptide structures; as the one carried out here; could be a good tool for recognizing specific configurations that should be further studied with more sophisticated methodologies. © 2017 by the authors.

Registro:

Documento: Artículo
Título:Differential interaction of antimicrobial peptides with lipid structures studied by coarse-grained molecular dynamics simulations
Autor:Balatti, G.E.; Ambroggio, E.E.; Fidelio, G.D.; Martini, M.F.; Pickholz, M.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, IFIBA, Buenos Aires, C1428BFA, Argentina
Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Departamento de Química Biológica “Dr. Ranwel Caputto”, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X500HUA, Argentina
Departamento de Farmacología, Instituto de la Química y Metabolismo del Fármaco (IQUIMIFA), Facultad de Farmacia y Bioquímica, Cátedra de Química Medicinal, CONICET-Universidad de Buenos Aires, Buenos Aires, C1113AAD, Argentina
Palabras clave:Aurein; Coarse-grain; Helicoidal peptides; Lipid bilayers; Maculatin; Molecular dynamics; 1-palmitoyl-2-oleoylphosphatidylcholine; amphibian protein; antimicrobial cationic peptide; aurein 1.2 peptide; maculatin-1.1 protein, Litoria; phosphatidylcholine; chemistry; computer simulation; conformation; lipid bilayer; metabolism; molecular dynamics; molecular model; Amphibian Proteins; Antimicrobial Cationic Peptides; Computer Simulation; Lipid Bilayers; Models, Molecular; Molecular Conformation; Molecular Dynamics Simulation; Phosphatidylcholines
Año:2017
Volumen:22
Número:10
DOI: http://dx.doi.org/10.3390/molecules22101775
Título revista:Molecules
Título revista abreviado:Molecules
ISSN:14203049
CODEN:MOLEF
CAS:phosphatidylcholine, 55128-59-1, 8002-43-5; 1-palmitoyl-2-oleoylphosphatidylcholine; Amphibian Proteins; Antimicrobial Cationic Peptides; aurein 1.2 peptide; Lipid Bilayers; maculatin-1.1 protein, Litoria; Phosphatidylcholines
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14203049_v22_n10_p_Balatti

Referencias:

  • Wang, G., Li, X., Wang, Z., APD3: The antimicrobial peptide database as a tool for research and education (2016) Nucleic Acids Res., 44, pp. D1087-D1093
  • Guilhelmelli, F., Vilela, N., Albuquerque, P., Derengowski, L.S., Silva-Pereira, I., Kyaw, C.M., Antibiotic development challenges: The various mechanisms of action of antimicrobial peptides and of bacterial resistance (2013) Front. Microbiol., 4, p. 353
  • Dathe, M., Wieprecht, T., Structural features of helical antimicrobial peptides: Their potential to modulate activity on model membranes and biological cells (1999) Biochim. Biophys. Acta, 1462, pp. 71-87
  • Reddy, K.V.R., Yedery, R.D., Aranha, C., Antimicrobial peptides: Premises and promises (2004) Int. J. Antimicrob. Agents, 24, pp. 536-547
  • Kosikowska, P., Lesner, A., Antimicrobial peptides (AMPs) as drug candidates: A patent review (2003–2015) (2016) Expert Opin. Ther. Pat, 26, pp. 689-702
  • Rozek, T., Wegener, K.L., Bowie, J.H., Olver, I.N., Carver, J.A., Wallace, J.C., Tyler, M.J., The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis: The solution structure of aurein 1.2 (2000) Eur. J. Biochem., 267, pp. 5330-5341
  • Hoskin, D.W., Ramamoorthy, A., Studies on anticancer activities of antimicrobial peptides (2008) Biochim. Biophys. Acta, 1778, pp. 357-375
  • De La Fuente-Núñez, C., Cardoso, M.H., De Souza Cândido, E., Franco, O.L., Hancock, R.E.W., Synthetic antibiofilm peptides (2016) Biochim. Biophys. Acta, 1858, pp. 1061-1069
  • Hilchie, A.L., Wuerth, K., Hancock, R.E.W., Immune modulation by multifaceted cationic host defense (antimicrobial) peptides (2013) Nat. Chem. Biol., 9, pp. 761-768
  • Mansour, S.C., Pena, O.M., Hancock, R.E.W., Host defense peptides: Front-line immunomodulators (2014) Trends Immunol, 35, pp. 443-450
  • Fjell, C.D., Hiss, J.A., Hancock, R.E.W., Schneider, G., Designing antimicrobial peptides: Form follows function (2011) Nat. Rev. Drug Discov
  • Bahar, A.A., Ren, D., Antimicrobial peptides (2013) Pharmaceuticals, 6, pp. 1543-1575
  • Tossi, A., Sandri, L., Giangaspero, A., Amphipathic, alpha-helical antimicrobial peptides (2000) Biopolymers, 55, pp. 4-30
  • Zelezetsky, I., Tossi, A., Alpha-helical antimicrobial peptides–Using a sequence template to guide structure-activity relationship studies (2006) Biochim. Biophys. Acta, 1758, pp. 1436-1449
  • Brogden, K.A., Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? (2005) Nat. Rev. Microbiol., 3, pp. 238-250
  • Leontiadou, H., Mark, A.E., Marrink, S.J., Antimicrobial Peptides in Action Antimicrobial Peptides in Action (2006) J. Am. Chem. Soc., 128, pp. 12156-12161
  • King, M.J., Bennett, A.L., Almeida, P.F., Lee, H.S., Coarse-grained simulations of hemolytic peptide δ-lysin interacting with a POPC bilayer (2016) Biochim. Biophys. Acta, 1858, pp. 3182-3194
  • Hu, Y., Sinha, S.K., Patel, S., Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: The case of charged oligo-arginine translocation into dmpc bilayers (2014) J. Phys. Chem. B, 118, pp. 11973-11992
  • Sun, D., Forsman, J., Woodward, C.E., Amphipathic membrane-active peptides recognize and stabilize ruptured membrane pores: Exploring cause and effect with coarse-grained simulations (2015) Langmuir, 31, pp. 752-761
  • Marrink, S.J., Tieleman, D.P., Perspective on the Martini model (2013) Chem. Soc. Rev., 42, p. 6801
  • Bond, P.J., Parton, D.L., Clark, J.F., Sansom, M.S.P., Coarse-Grained Simulations of the Membrane-Active Antimicrobial Peptide Maculatin 1.1 (2008) Biophys. J., 95, pp. 3802-3815
  • Parton, D.L., Akhmatskaya, E.V., Sansom, M.S.P., Multiscale simulations of the antimicrobial peptide maculatin 1.1: Water permeation through disordered aggregates (2012) J. Phys. Chem. B, 116, pp. 8485-8493
  • Santo, K.P., Irudayam, S.J., Berkowitz, M.L., Melittin creates transient pores in a lipid bilayer: Results from computer simulations (2013) J. Phys. Chem. B, 117, pp. 5031-5042
  • Santo, K.P., Berkowitz, M.L., Difference between magainin-2 and melittin assemblies in phosphatidylcholine bilayers: Results from coarse-grained simulations (2012) J. Phys. Chem. B, 116, pp. 3021-3030
  • Cruz, V.L., Ramos, J., Melo, M.N., Martinez-Salazar, J., Bacteriocin AS-48 binding to model membranes and pore formation as revealed by coarse-grained simulations (2013) Biochim. Biophys. Acta, 1828, pp. 2524-2531
  • Chia, B.C.S., Carver, J.A., Mulhern, T.D., Bowie, J.H., Maculatin 1.1, an anti-microbial peptide from the Australian tree frog, Litoria genimaculata. Solution structure and biological activity (2000) Eur. J. Biochem., 267, pp. 1894-1908
  • Ambroggio, E.E., Separovic, F., Bowie, J.H., Fidelio, G.D., Bagatolli, L.A., Direct Visualization of Membrane Leakage Induced by the Antibiotic Peptides: Maculatin, Citropin, and Aurein (2005) Biophys. J., 89, pp. 1874-1881
  • Hopp, T.P., Woods, K.R., Prediction of protein antigenic determinants from amino acid sequences (1981) Immunology, 78, pp. 3824-3828
  • Fernández-Vidal, M., Jayasinghe, S., Ladokhin, A.S., White, S.H., Folding Amphipathic Helices Into Membranes: Amphiphilicity Trumps Hydrophobicity (2007) J. Mol. Biol., 370, pp. 459-470
  • Van Den Bogaart, G., Guzmán, J.V., Mika, J.T., Poolman, B., On the mechanism of pore formation by melittin (2008) J. Biol. Chem., 283, pp. 33854-33857
  • Fernandez, D.I., Gehman, J.D., Separovic, F., Membrane interactions of antimicrobial peptides from Australian frogs (2009) Biochim. Biophys. Acta, 1788, pp. 1630-1638
  • Bond, P.J., Holyoake, J., Ivetac, A., Khalid, S., Sansom, M.S.P., Coarse-grained molecular dynamics simulations of membrane proteins and peptides (2007) J. Struct. Biol., 157, pp. 593-605
  • Shahmiri, M., Enciso, M., Mechler, A., Controls and constrains of the membrane disrupting action of Aurein 1.2 (2015) Sci. Rep., 5, p. 16378
  • Bennett, W.F.D., Tieleman, D.P., Water defect and pore formation in atomistic and coarse-grained lipid membranes: Pushing the limits of coarse graining (2011) J. Chem. Theory Comput., 7, pp. 2981-2988
  • Marcotte, I., Wegener, K.L., Lam, Y.H., Chia, B.C.S., De Planque, M.R.R., Bowie, J.H., Auger, M., Separovic, F., Interaction of antimicrobial peptides from Australian amphibians with lipid membranes (2003) Chem. Phys. Lipids, 122, pp. 107-120
  • Matsuzaki, K., Sugishita, K.I., Ishibe, N., Ueha, M., Nakata, S., Miyajima, K., Epand, R.M., Relationship of membrane curvature to the formation of pores by magainin 2 (1998) Biochemistry, 37, pp. 11856-11863
  • Mishra, A., Lai, G.H., Schmidt, N.W., Sun, V.Z., Rodriguez, A.R., Tong, R., Tang, L., Kamei, D.T., Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 16883-16888
  • Schmidt, N.W., Wong, G.C.L., Antimicrobial peptides and induced membrane curvature: Geometry, coordination chemistry, and molecular engineering (2013) Curr. Opin. Solid State Mater. Sci., 17, pp. 151-163
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C., GROMACS: Fast, flexible, and free (2005) J. Comput. Chem., 26, pp. 1701-1718
  • Lindahl, E., Hess, B., Van Der Spoel, D., GROMACS 3.0: A package for molecular simulation and trajectory analysis (2001) J. Mol. Model
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R., Van Der Spoel, D., GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit (2013) Bioinformatics, 29, pp. 845-854
  • Berendsen, H.J.C., Van Der Spoel, D., Van Drunen, R., GROMACS: A message-passing parallel molecular dynamics implementation (1995) Comput. Phys. Commun, 91, pp. 43-56
  • Marrink, S.J., De Vries, A.H., Mark, A.E., Coarse Grained Model for Semiquantitative Lipid Simulations (2004) J. Phys. Chem. B, 108, pp. 750-760
  • Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., De Vries, A.H., The MARTINI force field: Coarse grained model for biomolecular simulations (2007) J. Phys. Chem. B, 111, pp. 7812-7824
  • De Jong, D.H., Singh, G., Bennett, W.F.D., Arnarez, C., Wassenaar, T.A., Schäfer, L.V., Periole, X., Marrink, S.J., Improved parameters for the martini coarse-grained protein force field (2013) J. Chem. Theory Comput., 9, pp. 687-697
  • Yesylevskyy, S.O., Schäfer, L.V., Sengupta, D., Marrink, S.J., Polarizable water model for the coarse-grained MARTINI force field (2010) Plos Comput. Biol., 6, pp. 1-17
  • Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., The protein data bank (2000) Nucleic Acids Res, 28, pp. 235-242
  • Uggerhøj, L.E., Munk, J.K., Hansen, P.R., G ntert, P., Wimmer, R., Structural features of peptoid-peptide hybrids in lipid-water interfaces (2014) FEBS Lett, 588, pp. 3291-3297
  • Joosten, R.P., Te Beek, T.A.H., Krieger, E., Hekkelman, M.L., Hooft, R.W.W., Schneider, R., Sander, C., Vriend, G., A series of PDB related databases for everyday needs (2011) Nucleic Acids Res, 39
  • Kabsch, W., Sander, C., Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features (1983) Biopolymers, 22, pp. 2577-2637
  • http://www.bachem.com/servicesupport/peptidecalculator/, BACHEM Peptide Calculator Available online: (accessed on 19 October 2017); Snider, C., Jayasinghe, S., Hristova, K., White, S.H., MPEx: A tool for exploring membrane proteins (2009) Protein Sci., 18, pp. 2624-2628

Citas:

---------- APA ----------
Balatti, G.E., Ambroggio, E.E., Fidelio, G.D., Martini, M.F. & Pickholz, M. (2017) . Differential interaction of antimicrobial peptides with lipid structures studied by coarse-grained molecular dynamics simulations. Molecules, 22(10).
http://dx.doi.org/10.3390/molecules22101775
---------- CHICAGO ----------
Balatti, G.E., Ambroggio, E.E., Fidelio, G.D., Martini, M.F., Pickholz, M. "Differential interaction of antimicrobial peptides with lipid structures studied by coarse-grained molecular dynamics simulations" . Molecules 22, no. 10 (2017).
http://dx.doi.org/10.3390/molecules22101775
---------- MLA ----------
Balatti, G.E., Ambroggio, E.E., Fidelio, G.D., Martini, M.F., Pickholz, M. "Differential interaction of antimicrobial peptides with lipid structures studied by coarse-grained molecular dynamics simulations" . Molecules, vol. 22, no. 10, 2017.
http://dx.doi.org/10.3390/molecules22101775
---------- VANCOUVER ----------
Balatti, G.E., Ambroggio, E.E., Fidelio, G.D., Martini, M.F., Pickholz, M. Differential interaction of antimicrobial peptides with lipid structures studied by coarse-grained molecular dynamics simulations. Molecules. 2017;22(10).
http://dx.doi.org/10.3390/molecules22101775