Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Magnetic CoFe2O4 nanotubes, nanorods and nanowires were synthesized by the template method. The materials are highly crystalline and formed by compactly packed ceramic particles whose equivalent size diameter depends on the nanostructure type. Nanotubes and nanorods present the remarkable characteristic of having very large coercive fields (1000–1100 Oe) in comparison with nanoparticles of the same crystallite size (400 Oe) while keeping similar saturation magnetization (53–55 emu/g). Nanorods were used as filler material in polydimethylsiloxane elastomer composites, which were structured by curing in the presence of uniform magnetic field, Hcuring. In that way the nanorods agglomerate in the cured elastomer, forming needles-like structures (pseudo-chains) oriented in the direction of Hcuring. SEM analysis show that pseudo-chains are formed by bunches of nanorods oriented in that direction. At the considered filler concentration (1 % w/w), the structured elastomers conserve the magnetic properties of the fillers, that is, high coercive fields without observing magnetic anisotropy. The elastomer composites present strong elastic anisotropy, with compression constants about ten times larger in the direction parallel to the pseudo-chains than in the perpendicular direction, as determined by compression stress–strain curves. That anisotropic factor is about three-four times higher than that observed when using spherical CoFe2O4 nanoparticles or elongated Ni nanochains. Hence, the use of morphological anisotropic structures (nanorods) results in composites with enhanced elastic anisotropy. It is also remarkable that the large elastic anisotropy was obtained at lower filler concentration compared with the above-mentioned systems (1 % w/w vs. 5–10 % w/w). © 2015, Springer Science+Business Media Dordrecht.

Registro:

Documento: Artículo
Título:Synthesis and characterization of CoFe2O4 magnetic nanotubes, nanorods and nanowires. Formation of magnetic structured elastomers by magnetic field-induced alignment of CoFe2O4 nanorods
Autor:Antonel, P.S.; Oliveira, C.L.P.; Jorge, G.A.; Perez, O.E.; Leyva, A.G.; Negri, R.M.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
Grupo de Fluidos Complexos, Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina
Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Grupo de Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (Argentina) and Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Av. Gral. Paz y Constituyentes, 1499, San Martín, Pcia. de Buenos Aires, Argentina
Palabras clave:Magnetic composites; Magnetic nanorods; Magnetic nanotubes; Structured elastomers; Anisotropy; Chains; Coercive force; Crystallite size; Curing; Elastomers; Fillers; Magnetic fields; Magnetism; Nanoparticles; Nanorods; Nanostructures; Nanotubes; Nanowires; Plastics; Saturation magnetization; Silicones; Yarn; Anisotropic structure; Elastomer composites; Magnetic composites; Magnetic nanorod; Magnetic nanotubes; Polydimethylsiloxane elastomers; Synthesis and characterizations; Uniform magnetic fields; Magnetic anisotropy; dimeticone; elastomer; magnetic cobalt ferrite nanorod; magnetic cobalt ferrite nanotube; magnetic cobalt ferrite nanowire; magnetic nanoparticle; unclassified drug; anisotropy; Article; chemical structure; concentration (parameters); controlled study; magnetic field; particle size; priority journal; synthesis
Año:2015
Volumen:17
Número:7
DOI: http://dx.doi.org/10.1007/s11051-015-3073-7
Título revista:Journal of Nanoparticle Research
Título revista abreviado:J. Nanopart. Res.
ISSN:13880764
CAS:dimeticone, 32028-95-8, 68248-27-1, 9004-73-3, 9006-65-9
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13880764_v17_n7_p_Antonel

Referencias:

  • Albrecht, O., Zierold, R., Allende, S., Escrig, J., Patzig, C., Rauschenbach, B., Nielsch, K., Görlitz, D., Experimental evidence for an angular dependent transition of magnetization reversal modes in magnetic nanotubes (2011) J Appl Phys, 109, pp. 093910-093914
  • Antonel, P.S., Jorge, G.A., Perez, O., Butera, A., Leyva, A.G., Negri, R.M., Magnetic and elastic properties of CoFe<inf>2</inf>O<inf>4</inf>-PDMS magnetically oriented elastomer nanocomposites (2011) J App Phys, 110, pp. 43920-43928
  • Antonel, P.S., Negri, R.M., Leyva, A.G., Jorge, G.A., Anisotropy and relaxation processes of uniaxially oriented CoFe<inf>2</inf>O<inf>4</inf> nanoparticles dispersed in PDMS (2012) Physica B, 407, pp. 3165-3167
  • Bance, S., Fischbacher, J., Schrefl, T., Zins, I., Rieger, G., Cassignol, C., Micromagnetics of shape anisotropy based permanent magnets (2014) J Mag Mag Mat, 363, pp. 121-124
  • Bechelany, M., Amin, A., Brioude, A., Cornu, D., Miele, P., ZnO nanotubes by template-assisted sol–gel route (2012) J Nanopart Res, 14, pp. 980-986
  • Bellino, M.G., Sacanell, J.G., Lamas, D.G., Leyva, D.G., Walsöe, N.E., High-performance solid-oxide fuel cell cathodes based on cobaltite nanotubes (2007) J Am Chem Soc, 129, pp. 3066-3067
  • Bica, I., Liu, Y.D., Choi, H.J., Magnetic field intensity effect on plane electric capacitor characteristics and viscoelasticity of magnetorheological elastomer (2012) Colloid Polym Sci, 290, pp. 1115-1122
  • Butera, A., Alvarez, N., Jorge, G.A., Ruiz, M.M., Mietta, J.L., Negri, R.M., Microwave response of anisotropic magnetorheological elastomers: model and experiments (2012) Phys Rev B, 86, pp. 144424-144428
  • Cernea, M., Trupina, L., Vasile, B.S., Bartha, C., Radu, R., Chirila, C., Teodorescu, A., BiFeO<inf>3</inf> doped-BNT-BT0.08 piezoelectric and magnetic nanowires, derived from sol–gel precursor (2014) J Nanopart Res, 16, pp. 2231-2238
  • Chen, L., Jerrams, S., A rheological model of the dynamic behaviour of magnetorheological elastomers (2011) J Appl Phys, 110, pp. 013513-013516
  • Chen, A.P., Guslienko, K.Y., Gonzalez, J., Magnetization configurations and reversal of thin magnetic nanotubes with uniaxial anisotropy (2010) J Appl Phys, 108, pp. 083920-083927
  • Cheng, Q., Sun, Z., Meininger, G.A., Almasri, M., Mechanical study of micromachined polydimethylsiloxane elastic microposts (2010) Rev Sci Instrum, 81, pp. 106104-106106
  • Danas, K., Kankanala, S.V., Triantafyllidis, N., Experiments and modeling of iron-particle-filled magnetorheological elastomers (2012) J Mech Phys Solids, 60, pp. 120-138
  • Escrig, J., Lavín, R., Palma, J.L., Denardin, J.C., Altbir, D., Cortés, A., Gómez, H., Geometry dependence of coercivity in Ni nanowire arrays (2008) Nanotechnology, 19, p. 075713
  • Forster, H., Bertram, N., Wang, X., Dittrich, R., Schrefl, T., Energy barrier and effective thermal reversal volume in columnar grains (2003) J Mag Mag Mat, 267, pp. 69-79
  • Fuentes, R.O., Muñoz, F.F., Acuña, L.M., Leyva, A.G., Baker, R.T., Preparation and characterization of nanostructured gadolinia-doped ceria tubes (2008) J Mater Chem, 18, pp. 5689-5695
  • Fuentes, R.O., Acuña, L.M., Zimicz, M.G., Lamas, D.G., Sacanell, J.G., Leyva, A.G., Baker, R.T., (2008) Chem Mater, 20, pp. 7356-7363
  • Gajbhiye, N.S., Srivastava, S., Kurian, S., Behta, B.R., Singh, V.N., Magnetic Field Assisted Hydrothermal Synthesis of CoFe2O4 Nanowires (2010) Journal of Physics: Conference Series, 200, p. 072093
  • Grobert, N., Hsu, W.K., Zhu, Y.Q., Hare, J.P., Kroto, H.W., Walton, D.R.M., Terrones, M., Morales, F., Enhanced magnetic coercivities in Fe nanowires (1999) Appl Phys Lett, 75, pp. 3363-3364
  • Holz, A., Scherer, C., Topological theory of magnetism in nanostructured ferromagnets (1994) Phys Rev B, 50, pp. 6209-6232
  • Høyer, H., Knaapila, M., Kjelstrup-Hansen, J., Helgesen, G., Microelectromechanical strain and pressure sensors based on electric field aligned carbon cone and carbon black particles in a silicone elastomer matrix (2012) J Appl Phys, 112, pp. 094324-094328
  • Hussain, S.T., Siddiq, A.S.M., Ali, S., Iron-doped titanium dioxide nanotubes: a study of electrical, optical, and magnetic properties (2011) J Nanopart Res, 13, pp. 6517-6525
  • Inglis, D.W., A method for reducing pressure-induced deformation in silicone microfluidics (2010) Biomicrofluidics, 4, pp. 026504-026511
  • Jung, J.S., Lim, J.H., Choi, K.H., Oh, S.L., Kim, Y.R., Lee, S.H., Smith, D.A., O’Connor, C.J., CoFe<inf>2</inf>O<inf>4</inf> nanostructures with high coercivity (2005) J Appl Phys, 97, pp. 10306-10309
  • Kinning, D.J., Thomas, E.L., Hard-sphere interactions between spherical domains in diblock copolymers (1984) Macromol, 17, pp. 1712-1718
  • Ko, T.Y., Tsai, M.H., Lee, C.S., Sun, K.W., Electron transport mechanisms in individual cobalt-doped ZnO nanorods (2012) J Nanopart Res, 14, pp. 1253-1265
  • Kohli, S., McCurdy, P.R., Johnson, D.C., Das, J., Prieto, A.L., Rithner, C.D., Fisher, E.R., Template-assisted chemical vapor deposited spinel ferrite nanotubes (2010) J Phys Chem C, 114, pp. 19557-19561
  • Landa, R.A., Antonel, P.S., Ruiz, M.M., Perez, O.E., Butera, A., Jorge, G.A., Oliveira, C.L.P., Negri, R.M., Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains (2013) J App Phys, 114, pp. 213912-213922
  • Landeros, P., Núñez, A.S., Domain wall motion on magnetic Nanotubes (2010) J Appl Phys, 108, pp. 033917-033926
  • Leslie-Pelecky, D.L., Rieke, R.D., Magnetic properties of nanostructured (1996) Mater Chem Mater, 8, pp. 1770-1783
  • Levy, P., Leyva, A.G., Troiani, H., Sanchez, R.D., Nanotubes of rare earth manganese oxide (2003) Appl Phys Lett, 83, pp. 5247-5249
  • Leyva, A.G., Stoliar, P., Rosenbusch, M., Levy, P., Curiale, J., Troiani, H., Sanchez, R.D., Synthesis route for obtaining manganese oxide based nanostructures (2004) Phys B, 354, pp. 158-160
  • Leyva, A.G., Curiale, J., Troiani, H., Rosenbusch, M., Levy, P., Sánchez, R.D., Nanoparticles of La<inf>1−x</inf>Sr<inf> x</inf>MnO<inf>3</inf> (x = 0.33, 0.20) assembled into hollow nanostructures for solid oxide fuel cells. disclosing materials at the nanoscale (2006) Adv Sci Technol, 51, pp. 54-59
  • Lorenzo, D., Fragouli, D., Bertoni, G., Innocenti, C., Anyfantis, G.C., Cozzoli, P.D., Cingolani, R., Formation and magnetic manipulation of periodically aligned microchains in thin plastic membranes (2012) J Appl Phys, 112, pp. 083927-083934
  • Macias, J.D., Ordonez-Miranda, J., Alvarado-Gil, J.J., Resonance frequencies and Young’s modulus determination of magnetorheological elastomers using the photoacoustic technique (2012) J Appl Phys, 112, pp. 124910-124917
  • Mietta, J.L., Ruiz, M.M., Antonel, P.S., Perez, O.E., Butera, A., Jorge, G.A., Negri, R.M., Anisotropic magnetoresistance and piezoresistivity in structured Fe<inf>3</inf>O<inf>4</inf>–silver particles in PDMS elastomers at room temperature (2012) Langmuir, 28, pp. 6985-6996
  • Mietta, J.L., Jorge, G.A., Perez, O.E., Maeder, T., Negri, R.M., Superparamagnetic anisotropic elastomer connectors exhibiting reversible magneto-piezoresistivity (2013) Sens Actuat A, 192, pp. 34-41
  • Mietta, J.L., Jorge, G.E., Negri, R.M., A flexible strain gauge exhibiting reversible piezoresistivity based on an anisotropic magnetorheological polymer (2014) Smart Mater Struct, 23, pp. 85026-85038
  • Mordina, B., Tiwari, R.J., Setua, D.K., Sharma, A., Magnetorheology of polydimethylsiloxane elastomer/FeCo<inf>3</inf> nanocomposite (2014) J Phys Chem C, 118, pp. 25684-25703
  • Negri, R.M., Rodriguez, S.D., Bernik, D.L., Molina, F.V., Pilosof, A., Pérez, O.E., A model for the dependence of the electrical conductance with the applied stress in insulating-conducting composites (2010) J Appl Phys, 107, pp. 113703-113714
  • Pereira, A., Gallardo, C., Espejo, A.P., Briones, J., Vivas, L.G., Vázquez, M., Denardin, J.C., Escrig, J., Tailoring the magnetic properties of ordered 50-nm diameter CoNi nanowire arrays (2013) J Nanopart Res, 15, pp. 2041-2048
  • Ruiz, M.M., Antonel, P.S., Perez, O.E., Negri, R.M., Jorge, G.E., Structural and magnetic properties of Fe<inf>2−x</inf>CoSm<inf> x</inf>O<inf>4</inf>-nanoparticles and Fe<inf>2−x</inf>CoSm<inf> x</inf>O<inf>4</inf>–PDMS magnetoelastomers as a function of Sm content (2012) J Mag Mag Mater, 327, pp. 11-19
  • Ruiz, M.M., Marchi, M.C., Perez, O.E., Jorge, G.E., Mirta, F., (2015) Norma D’Accorso, , Martín Negri R: Structured elastomeric submillimeter films displaying magneto and piezo resistivity. J Pol Sci B
  • Semeriyanov, F., Chervanyov, A.I., Jurk, R., Subramaniam, K., Konig, S., Roscher, M., Das, A., Heinrich, G.J., Non-monotonic dependence of the conductivity of carbon nanotube-filled elastomers subjected to uniaxial compression/decompression (2013) J Appl Phys, 113, pp. 103706-103712
  • Shahrivar, K., de Vicente, J., Where physics meets chemistry meets biology for fundamental soft matter research (2013) Soft Matter, 9, pp. 11451-11456
  • Teixeira, J., Small-angle scattering by fractal systems (1998) J Appl Crystallogr, 21, pp. 781-785
  • Thang, P.D., Rijnders, G., Blank, D.H.A., Stress-induced magnetic anisotropy of CoFe<inf>2</inf>O<inf>4</inf> thin films using pulsed laser deposition (2007) J Mag Mag Mater, 310, pp. 2621-2623
  • Tong, J., Simmons, C.A., Yu, S.J., Precision patterning of PDMS membranes and applications (2008) Micromech Microeng, 18, pp. 037004-037007
  • Tsai, M.C., Lin, G.T., Chiu, H.T., Lee, C.Y., Synthesis of zirconium dioxide nanotubes, nanowires, and nanocables by concentration dependent solution deposition (2008) J Nanopart Res, 10, pp. 863-869
  • Usov, N.A., Serebryakova, O.N., The peculiarities of magnetization reversal process in magnetic nanotube with helical anisotropy (2014) J Appl Phys, 116, pp. 133902-133909

Citas:

---------- APA ----------
Antonel, P.S., Oliveira, C.L.P., Jorge, G.A., Perez, O.E., Leyva, A.G. & Negri, R.M. (2015) . Synthesis and characterization of CoFe2O4 magnetic nanotubes, nanorods and nanowires. Formation of magnetic structured elastomers by magnetic field-induced alignment of CoFe2O4 nanorods. Journal of Nanoparticle Research, 17(7).
http://dx.doi.org/10.1007/s11051-015-3073-7
---------- CHICAGO ----------
Antonel, P.S., Oliveira, C.L.P., Jorge, G.A., Perez, O.E., Leyva, A.G., Negri, R.M. "Synthesis and characterization of CoFe2O4 magnetic nanotubes, nanorods and nanowires. Formation of magnetic structured elastomers by magnetic field-induced alignment of CoFe2O4 nanorods" . Journal of Nanoparticle Research 17, no. 7 (2015).
http://dx.doi.org/10.1007/s11051-015-3073-7
---------- MLA ----------
Antonel, P.S., Oliveira, C.L.P., Jorge, G.A., Perez, O.E., Leyva, A.G., Negri, R.M. "Synthesis and characterization of CoFe2O4 magnetic nanotubes, nanorods and nanowires. Formation of magnetic structured elastomers by magnetic field-induced alignment of CoFe2O4 nanorods" . Journal of Nanoparticle Research, vol. 17, no. 7, 2015.
http://dx.doi.org/10.1007/s11051-015-3073-7
---------- VANCOUVER ----------
Antonel, P.S., Oliveira, C.L.P., Jorge, G.A., Perez, O.E., Leyva, A.G., Negri, R.M. Synthesis and characterization of CoFe2O4 magnetic nanotubes, nanorods and nanowires. Formation of magnetic structured elastomers by magnetic field-induced alignment of CoFe2O4 nanorods. J. Nanopart. Res. 2015;17(7).
http://dx.doi.org/10.1007/s11051-015-3073-7